Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Health Care Inform ; 30(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36921978

RESUMO

BACKGROUND AND AIMS: Most patients with heart failure (HF) are diagnosed following a hospital admission. The clinical and health economic impacts of index HF diagnosis made on admission to hospital versus community settings are not known. METHODS: We used the North West London Discover database to examine 34 208 patients receiving an index diagnosis of HF between January 2015 and December 2020. A propensity score-matched (PSM) cohort was identified to adjust for differences in socioeconomic status, cardiovascular risk and pre-diagnosis health resource utilisation cost. Outcomes were stratified by two pathways to index HF diagnosis: a 'hospital pathway' was defined by diagnosis following hospital admission; and a 'community pathway' by diagnosis via a general practitioner or outpatient services. The primary clinical and health economic endpoints were all-cause mortality and cost-consequence differential, respectively. RESULTS: The diagnosis of HF was via hospital pathway in 68% (23 273) of patients. The PSM cohort included 17 174 patients (8582 per group) and was matched across all selected confounders (p>0.05). The ratio of deaths per person-months at 24 months comparing community versus hospital diagnosis was 0.780 (95% CI 0.722 to 0.841, p<0.0001). By 72 months, the ratio of deaths was 0.960 (0.905 to 1.020, p=0.18). Diagnosis via hospital pathway incurred an overall extra longitudinal cost of £2485 per patient. CONCLUSIONS: Index diagnosis of HF through hospital admission continues to dominate and is associated with a significantly greater short-term risk of mortality and substantially increased long-term costs than if first diagnosed in the community. This study highlights the potential for community diagnosis-early, before symptoms necessitate hospitalisation-to improve both clinical and health economic outcomes.


Assuntos
Insuficiência Cardíaca , Hospitalização , Humanos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/diagnóstico , Hospitais , Londres
2.
Lancet Digit Health ; 4(2): e117-e125, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998740

RESUMO

BACKGROUND: Most patients who have heart failure with a reduced ejection fraction, when left ventricular ejection fraction (LVEF) is 40% or lower, are diagnosed in hospital. This is despite previous presentations to primary care with symptoms. We aimed to test an artificial intelligence (AI) algorithm applied to a single-lead ECG, recorded during ECG-enabled stethoscope examination, to validate a potential point-of-care screening tool for LVEF of 40% or lower. METHODS: We conducted an observational, prospective, multicentre study of a convolutional neural network (known as AI-ECG) that was previously validated for the detection of reduced LVEF using 12-lead ECG as input. We used AI-ECG retrained to interpret single-lead ECG input alone. Patients (aged ≥18 years) attending for transthoracic echocardiogram in London (UK) were recruited. All participants had 15 s of supine, single-lead ECG recorded at the four standard anatomical positions for cardiac auscultation, plus one handheld position, using an ECG-enabled stethoscope. Transthoracic echocardiogram-derived percentage LVEF was used as ground truth. The primary outcome was performance of AI-ECG at classifying reduced LVEF (LVEF ≤40%), measured using metrics including the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with two-sided 95% CIs. The primary outcome was reported for each position individually and with an optimal combination of AI-ECG outputs (interval range 0-1) from two positions using a rule-based approach and several classification models. This study is registered with ClinicalTrials.gov, NCT04601415. FINDINGS: Between Feb 6 and May 27, 2021, we recruited 1050 patients (mean age 62 years [SD 17·4], 535 [51%] male, 432 [41%] non-White). 945 (90%) had an ejection fraction of at least 40%, and 105 (10%) had an ejection fraction of 40% or lower. Across all positions, ECGs were most frequently of adequate quality for AI-ECG interpretation at the pulmonary position (979 [93·3%] of 1050). Quality was lowest for the aortic position (846 [80·6%]). AI-ECG performed best at the pulmonary valve position (p=0·02), with an AUROC of 0·85 (95% CI 0·81-0·89), sensitivity of 84·8% (76·2-91·3), and specificity of 69·5% (66·4-72·6). Diagnostic odds ratios did not differ by age, sex, or non-White ethnicity. Taking the optimal combination of two positions (pulmonary and handheld positions), the rule-based approach resulted in an AUROC of 0·85 (0·81-0·89), sensitivity of 82·7% (72·7-90·2), and specificity of 79·9% (77·0-82·6). Using AI-ECG outputs from these two positions, a weighted logistic regression with l2 regularisation resulted in an AUROC of 0·91 (0·88-0·95), sensitivity of 91·9% (78·1-98·3), and specificity of 80·2% (75·5-84·3). INTERPRETATION: A deep learning system applied to single-lead ECGs acquired during a routine examination with an ECG-enabled stethoscope can detect LVEF of 40% or lower. These findings highlight the potential for inexpensive, non-invasive, workflow-adapted, point-of-care screening, for earlier diagnosis and prognostically beneficial treatment. FUNDING: NHS Accelerated Access Collaborative, NHSX, and the National Institute for Health Research.


Assuntos
Inteligência Artificial , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Exame Físico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Estetoscópios , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Estudos Prospectivos , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...