Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(4): 496, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947259

RESUMO

Understanding the actual distribution of different Legionella species in water networks would help prevent outbreaks. Culture investigations followed by serological agglutination tests, with poly/monovalent antisera, still represent the gold standard for isolation and identification of Legionella strains. However, also MALDI-TOF and mip-gene sequencing are currently used. This study was conducted to genetically correlate strains of Legionella non pneumophila (L-np) isolated during environmental surveillance comparing different molecular techniques. Overall, 346 water samples were collected from the water system of four pavilions located in a hospital of the Apulia Region of Italy. Strains isolated from the samples were then identified by serological tests, MALDI-TOF, and mip-gene sequencing. Overall, 24.9% of water samples were positive for Legionella, among which the majority were Legionella pneumophila (Lpn) 1 (52.3%), followed by Lpn2-15 (20.9%), L-np (17.4%), Lpn1 + Lpn2-15 (7.1%), and L-np + Lpn1 (2.3%). Initially, L-np strains were identified as L. bozemanii by monovalent antiserum, while MALDI-TOF and mip-gene sequencing assigned them to L. anisa. More cold water than hot water samples were contaminated by L. anisa (p < 0.001). PFGE, RAPD, Rep-PCR, and SAU-PCR were performed to correlate L. anisa strains. Eleven out of 14 strains identified in all four pavilions showed 100% of similarity upon PFGE analysis. RAPD, Rep-PCR, and SAU-PCR showed greater discriminative power than PFGE.


Assuntos
Monitoramento Ambiental , Hospitais , Microbiologia da Água , Abastecimento de Água , Monitoramento Ambiental/métodos , Itália , Técnicas Microbiológicas/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Legionella/genética , Legionella/isolamento & purificação , Análise de Sequência de DNA
2.
Front Neurosci ; 15: 647783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867925

RESUMO

Amyloid-beta (Aß) 42/40 ratio, tau phosphorylated at threonine-181 (p-tau), and total-tau (t-tau) are considered core biomarkers for the diagnosis of Alzheimer's disease (AD). The use of fully automated biomarker assays has been shown to reduce the intra- and inter-laboratory variability, which is a critical factor when defining cut-off values. The calculation of cut-off values is often influenced by the composition of AD and control groups. Indeed, the clinically defined AD group may include patients affected by other forms of dementia, while the control group is often very heterogeneous due to the inclusion of subjects diagnosed with other neurological diseases (OND). In this context, unsupervised machine learning approaches may overcome these issues providing unbiased cut-off values and data-driven patient stratification according to the sole distribution of biomarkers. In this work, we took advantage of the reproducibility of automated determination of the CSF core AD biomarkers to compare two large cohorts of patients diagnosed with different neurological disorders and enrolled in two centers with established expertise in AD biomarkers. We applied an unsupervised Gaussian mixture model clustering algorithm and found that our large series of patients could be classified in six clusters according to their CSF biomarker profile, some presenting a typical AD-like profile and some a non-AD profile. By considering the frequencies of clinically defined OND and AD subjects in clusters, we subsequently computed cluster-based cut-off values for Aß42/Aß40, p-tau, and t-tau. This approach promises to be useful for large-scale biomarker studies aimed at providing efficient biochemical phenotyping of neurological diseases.

3.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118897, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121932

RESUMO

Adipogenesis is a finely orchestrated program involving a transcriptional cascade coordinated by CEBP and PPAR family members and by hormonally induced signaling pathways. Alterations in any of these factors result into impaired formation of fully differentiated adipocytes. Tm7sf2 gene encodes for a Δ(14)-sterol reductase primarily involved in cholesterol biosynthesis. Furthermore, TM7SF2 modulates the expression of the master gene of adipogenesis PPARγ, suggesting a role in the regulation of adipose tissue homeostasis. We investigated the differentiation of Tm7sf2-/- MEFs into adipocytes, compared to Tm7sf2+/+ MEFs. Tm7sf2 expression was increased at late stage of differentiation in wild type cells, while Tm7sf2-/- MEFs exhibited a reduced capacity to differentiate into mature adipocytes. Indeed, Tm7sf2-/- MEFs had lower neutral lipid accumulation and reduced expression of adipogenic regulators. At early stage, the reduction in C/EBPß expression impaired mitotic clonal expansion, which is needed by preadipocytes for adipogenesis induction. At late stage, the expression and activity of C/EBPα and PPARγ were inhibited in Tm7sf2-/- cells, leading to the reduced expression of adipocyte genes like Srebp-1c, Fasn, Scd-1, Adipoq, Fabp4, and Glut4. Loss of the acquisition of adipocyte phenotype was accompanied by a reduction in the levels of Irs1, and phosphorylated Akt and ERK1/2, indicating a blunted insulin signaling in differentiating Tm7sf2-/- cells. Moreover, throughout the differentiation process, increased expression of the antiadipogenic Mmp3 was observed in MEFs lacking Tm7sf2. These findings indicate Tm7sf2 as a novel factor influencing adipocyte differentiation that could be relevant to adipose tissue development and maintenance of metabolic health.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/genética , Oxirredutases/genética , PPAR gama/genética , Células 3T3-L1 , Adipócitos/citologia , Adipogenia/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Resistência à Insulina/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fosforilação/genética , Transdução de Sinais/genética
4.
Heliyon ; 6(12): e05741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364504

RESUMO

Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 µM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 µM 3BP. ROS generated in mitochondria were enhanced at 30 µM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 µM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.

5.
Diagnostics (Basel) ; 10(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256252

RESUMO

Neuropathological investigations report that in synucleinopathies with dementia, namely Parkinson's disease (PD) with dementia (PDD) and dementia with Lewy bodies (DLB), the histopathological hallmarks of Alzheimer's Disease (AD), in particular amyloid plaques, are frequently observed. In this study, we investigated the cerebrospinal fluid (CSF) AD biomarkers in different clinical phenotypes of synucleinopathies. CSF Aß42/Aß40 ratio, phosphorylated tau and total tau were measured as markers of amyloidosis (A), tauopathy (T) and neurodegeneration (N) respectively, in 98 PD (48 with mild cognitive impairment, PD-MCI; 50 cognitively unimpaired, PD-nMCI), 14 PDD and 15 DLB patients, and 48 neurological controls (CTRL). In our study, CSF AD biomarkers did not significantly differ between CTRL, PD-MCI and PD-nMCI patients. In PD-nMCI and PD-MCI groups, A-/T-/N- profile was the most represented. Prevalence of A+ was similar in PD-nMCI and PD-MCI (10% and 13%, respectively), being higher in PDD (64%) and in DLB (73%). DLB showed the lowest values of Aß42/Aß40 ratio. Higher total tau at baseline predicted a worse neuropsychological outcome after one year in PD-MCI. A+/T+, i.e., AD-like CSF profile, was most frequent in the DLB group (40% vs. 29% in PDD).

6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 895-908, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29729479

RESUMO

Enteric glial cells (EGCs) are components of the enteric nervous system, an organized structure that controls gut functions. EGCs may be vulnerable to different agents, such as bacterial infections that could alter the intestinal epithelial barrier, allowing bacterial toxins and/or other agents possessing intrinsic toxic effect to access cells. Palmitate, known to exhibit lipotoxicity, is released in the gut during the digestion process. In this study, we investigated the lipotoxic effect of palmitate in cultured EGCs, with particular emphasis on palmitate-dependent intracellular lipid remodeling. Palmitate but not linoleate altered mitochondrial and endoplasmic reticulum lipid composition. In particular, the levels of phosphatidic acid, key precursor of phospholipid synthesis, increased, whereas those of mitochondrial cardiolipin (CL) decreased; in parallel, phospholipid remodeling was induced. CL remodeling (chains shortening and saturation) together with palmitate-triggered mitochondrial burst, caused cytochrome c (cyt c) detachment from its CL anchor and accumulation in the intermembrane space as soluble pool. Palmitate decreased mitochondrial membrane potential and ATP levels, without mPTP opening. Mitochondrial ROS permeation into the cytosol and palmitate-induced ER stress activated JNK and p38, culminating in Bim and Bax overexpression, factors known to increase the outer mitochondrial membrane permeability. Overall, in EGCs palmitate produced weakening of cyt c-CL interactions and favoured the egress of the soluble cyt c pool outside mitochondria to trigger caspase-3-dependent viability loss. Elucidating the mechanisms of palmitate lipotoxicity in EGCs may be relevant in gut pathological conditions occurring in vivo such as those following an insult that may damage the intestinal epithelial barrier.


Assuntos
Citocromos c/metabolismo , Membranas Mitocondriais/metabolismo , Neuroglia/metabolismo , Palmitatos/metabolismo , Animais , Apoptose , Cardiolipinas/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Intestinos/citologia , Intestinos/inervação , Intestinos/patologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
7.
Sci Rep ; 7: 45569, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349972

RESUMO

Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPH-oxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Caspase 3/metabolismo , MAP Quinase Quinase 4/metabolismo , NADPH Oxidases/metabolismo , Neuroglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Neuroglia/enzimologia , Neuroglia/metabolismo , Ratos
8.
J Proteomics ; 152: 329-338, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27890797

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. SIGNIFICANCE: Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We found that 3BP affected not only the glycolytic pathway, but also pathways sharing metabolic intermediates with glycolysis, such as the pentose phosphate pathway and aminoacid metabolism. Furthermore, changes in the expression of proteins linked to resistance to cell death and stress response were found. Our work is the first analysis on a global scale of the proteome changes induced by 3BP in a GBM model and may contribute to clarifying the anticancer potential of this drug.


Assuntos
Glioblastoma/metabolismo , Glicólise/efeitos dos fármacos , Proteínas de Choque Térmico/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Piruvatos/farmacologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Proteínas de Choque Térmico/metabolismo , Humanos , Via de Pentose Fosfato , Fosforilação , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...