Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396975

RESUMO

The results of the synthesis of microcrystalline calcium phosphates such as hydroxoapatite, pyrophosphate, and tricalcium phosphate are presented herein. The influence of the addition of polyvinylpyrrolidone (PVP) on the phase characteristics of the resulting high-temperature ceramic sample is considered. The X-ray results show that hydroxyapatite (HAp) consists of a Ca5(PO4)3(OH) phase, while the sample with the addition of polyvinylpyrrolidone contains ß-Ca3(PO4)2 (65.5%) and ß-Ca2P2O7 (34.5%) phases calcium phosphates (CPs). IR spectroscopy was used to characterize the compositions of the samples. An important characteristic of the obtained samples is the elemental Ca/P ratio, which was determined via energy-dispersive analysis. The data obtained are consistent with the composition of dental enamel apatites, namely, in the CPs (1.27) and HAp (1.40). SEM was used to study the morphology of the surfaces of hydroxyapatite particles. Polyvinylpyrrolidone polymer fibers were obtained using the electroforming method with the inclusion of CPs in the composition. The fibers were oriented randomly, and nanoscale hydroxyapatite particles were incorporated into the fiber structure. Solubility data of the HAp, CPs, and Fibers in a physiological solution at room temperature and human body temperature were obtained. The solubility of the resulting HAp turned out to be higher than the solubility of the CPs. In turn, the concentration of Ca2+ in a physiological solution of PVP composite fibers with the inclusion of CPs was lower than that in powdered CPs.


Assuntos
Fosfatos , Povidona , Humanos , Temperatura , Fosfatos de Cálcio/química , Durapatita/química , Apatitas , Difração de Raios X
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139232

RESUMO

A unique method for synthesizing a surface modifier for metallic hydrogen permeable membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was developed. It was found that nanoparticles had unique hollow structures. This significantly reduced the cost of their production due to the economical use of metal. According to the results of electrochemical studies, a synthesized bimetallic Pd-Pt/Pd-Ag modifier showed excellent catalytic activity (up to 60.72 mA cm-2), long-term stability, and resistance to COads poisoning in the alkaline oxidation reaction of methanol. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier showed the highest hydrogen permeation flux density, up to 27.3 mmol s-1 m-2. The obtained hydrogen flux density was two times higher than that for membranes with a classic Pdblack/Pd-Ag modifier and an order of magnitude higher than that for an unmodified membrane. Since the rate of transcrystalline hydrogen transfer through a membrane increased, while the speed of transfer through defects remained unchanged, a one and a half times rise in selectivity of the developed Pd-Pt/Pd-Ag membranes was recorded, and it amounted to 3514. The achieved results were due to both the synergistic effect of the combination of Pd and Pt metals in the modifier composition and the large number of available catalytically active centers, which were present as a result of non-classic morphology with high-index facets. The specific faceting, defect structure, and unusual properties provide great opportunities for the application of nanoparticles in the areas of membrane reactors, electrocatalysis, and the petrochemical and hydrogen industries.


Assuntos
Nanopartículas , Vapor , Hidrogênio/química , Platina/química , Catálise , Nanopartículas/química
3.
Membranes (Basel) ; 13(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37505015

RESUMO

Thin Pd-40%Cu films were obtained via the classical melting and rolling method, magnetron sputtering, and modified with nanostructured functional coatings to intensify the process of hydrogen transportation. The films were modified by electrodeposition, according to the classical method of obtaining palladium black and "Pd-Au nanoflowers" with spherical and pentagonal particles, respectively. The experiment results demonstrated the highest catalytic activity (89.47 mA cm-2), good resistance to CO poisoning and long-term stability of Pd-40%Cu films with a pentagonal structured coating. The investigation of the developed membranes in the hydrogen transport processes in the temperature range of 25-300 °C also demonstrated high and stable fluxes of up to 475.28 mmol s-1 m-2 (deposited membranes) and 59.41 mmol s-1 m-2 (dense metal membranes), which were up to 1.5 higher, compared with membrane materials with classic niello. For all-metal modified membranes, the increase in flux was up to sevenfold, compared with a smooth membrane made of pure palladium, and for deposited films, this difference was manyfold. The membrane materials' selectivity was also high, up to 4419. The developed strategy for modifying membrane materials with functional coatings of a fundamentally new complex geometry can shed new light on the development and fabrication of durable and highly selective palladium-based membranes for gas steam reformers.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500801

RESUMO

A controlled strategy for the electrochemical synthesis of mono- and bimetallic nanoparticles with a unique and complex morphology has been developed. The investigation of the effect of changing the surfactant concentration and current density regulating the medium pH has revealed the fundamental patterns of nanoparticle growth. The developed method has allowed to synthesis of nanoparticles with a controlled pentabranched structure for the monometallic palladium as well as for favorable combinations of metals-Pd-Ag and Pd-Pt. The obtained nanoparticles were investigated in alkaline methanol oxidation. The results demonstrated quite high catalytic activity up to 83.51 mA cm-2 and long-term stability, which are caused by the increase in electrochemically active surface area by increasing the active center's number. This was made possible due to the creation of unusual nanoparticle morphology, namely the presence of high-energy high-index facets. The developed nanoparticles were also studied as a modifying coating for hydrogen-permeable membranes in the processes of hydrogen transport. The membranes coated with the nanoparticles demonstrated sufficiently high hydrogen flux up to 11.33 mmol s-1 m-2 and high H2/N2 selectivity up to 2254. Such results can be explained by the obvious acceleration of surface processes through the application of the developed nanoparticles. The novel synthesis strategy can potentially be extended to other metal nanoparticle systems. Thus it can be an effective way to solve relevant problems of design of controlled synthetic methods allowing the nanoparticle morphology tuning according to the required functional properties.

5.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008654

RESUMO

A method for obtaining composite gas-diffusion PdCu-Nb-PdCu membranes modified with a nanostructured crystalline coating was developed to increase the performance of Nb-based membranes. A modifying functional layer with a controlled size and composition was synthesized by electrochemical deposition, which made it possible to determine a certain geometric shape for palladium nanocrystallites. Developed PdCu-Nb-PdCu membranes have demonstrated flux values up to 0.232 mmol s-1 m-2 in the processes of diffusion purification of hydrogen at 400 °C. A very significant difference in the hydrogen fluxes through the modified and non-modified composite PdCu-Nb-PdCu membranes reached 1.73 times at the lower threshold temperature of 300 °C. Cu doping of protective layer did not affect the selective properties of the membranes, which was confirmed by the obtained high selectivity values up to 1323, and made it possible to reduce the noble metal content. The research data indicate that the modification of the membrane surface significantly accelerates the hydrogen transfer process at sufficiently low temperatures due to the acceleration of dissociative-associative processes on the surface. The reported approach demonstrates new possibilities for creating productive and cost-efficient membranes based on niobium.


Assuntos
Cobre/química , Nanoestruturas/química , Nióbio/química , Paládio/química , Hidrogênio/química , Peróxido de Hidrogênio/química
6.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096829

RESUMO

The method of synthesis of bimetallic Pd-Ag pentagonally structured catalyst "nanostar" on the surface of Pd-23%Ag alloy films has been developed. The resulting catalyst was studied as a highly active functional layer for methanol oxidation reaction (MOR) in alkaline media and the intensification of hydrogen transport through the Pd-23%Ag membrane in the processes of hydrogen diffusion purification. A modifying layer with a controlled size, composition and excellent electrocatalytic activity was synthesized by electrochemical deposition at a reduced current density compared to classical methods. The low deposition rate affects the formation of pentagonally structured nanocrystallites, allowing Pd and Ag particles to form well-defined structures due to the properties of the surfactant used. Electrochemical studies have demonstrated that the catalyst synthesized by the "nanostar" method shows better electrocatalytic activity in relation to MOR and demonstrates a higher peak current (up to 17.82 µA cm-2) in comparison with one for the catalyst synthesized by the "nanoparticle" method (up to 10.66 µA cm-2) in a cyclic voltammetric study. The nanostar catalyst electrode releases the highest current density (0.25 µA cm-2) for MOR and demonstrates higher catalytic activity for the oxidation of possible intermediates such as sodium formate in MOR. In the processes of diffusion membrane purification of hydrogen, a multiple increase in the density of the penetrating flux of hydrogen through the membranes modified by the "nanostar" catalyst (up to 10.6 mmol s-1 m-2) was demonstrated in comparison with the membranes modified by the "nanoparticles" method (up to 4.49 mmol s-1 m-2). Research data may indicate that the properties of the developed pentagonally structured catalyst "nanostar" and its enhanced activity with respect to reactions involving hydrogen increase the desorption activity of the membrane, which ultimately accelerates the overall stepwise transfer of hydrogen across the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...