Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1002, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307834

RESUMO

Visual illusions and mental imagery are non-physical sensory experiences that involve cortical feedback processing in the primary visual cortex. Using laminar functional magnetic resonance imaging (fMRI) in two studies, we investigate if information about these internal experiences is visible in the activation patterns of different layers of primary visual cortex (V1). We find that imagery content is decodable mainly from deep layers of V1, whereas seemingly 'real' illusory content is decodable mainly from superficial layers. Furthermore, illusory content shares information with perceptual content, whilst imagery content does not generalise to illusory or perceptual information. Together, our results suggest that illusions and imagery, which differ immensely in their subjective experiences, also involve partially distinct early visual microcircuits. However, overlapping microcircuit recruitment might emerge based on the nuanced nature of subjective conscious experience.


Assuntos
Ilusões , Córtex Visual , Humanos , Ilusões/fisiologia , Córtex Visual Primário , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Retroalimentação , Imageamento por Ressonância Magnética , Mapeamento Encefálico
2.
Curr Biol ; 33(18): 3865-3871.e3, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37643620

RESUMO

Neuronal activity in the primary visual cortex (V1) is driven by feedforward input from within the neurons' receptive fields (RFs) and modulated by contextual information in regions surrounding the RF. The effect of contextual information on spiking activity occurs rapidly and is therefore challenging to dissociate from feedforward input. To address this challenge, we recorded the spiking activity of V1 neurons in monkeys viewing either natural scenes or scenes where the information in the RF was occluded, effectively removing the feedforward input. We found that V1 neurons responded rapidly and selectively to occluded scenes. V1 responses elicited by occluded stimuli could be used to decode individual scenes and could be predicted from those elicited by non-occluded images, indicating that there is an overlap between visually driven and contextual responses. We used representational similarity analysis to show that the structure of V1 representations of occluded scenes measured with electrophysiology in monkeys correlates strongly with the representations of the same scenes in humans measured with functional magnetic resonance imaging (fMRI). Our results reveal that contextual influences rapidly alter V1 spiking activity in monkeys over distances of several degrees in the visual field, carry information about individual scenes, and resemble those in human V1. VIDEO ABSTRACT.


Assuntos
Córtex Visual , Percepção Visual , Animais , Humanos , Percepção Visual/fisiologia , Haplorrinos , Córtex Visual Primário , Córtex Visual/fisiologia , Campos Visuais , Estimulação Luminosa/métodos
3.
Biology (Basel) ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508451

RESUMO

Neurons in the primary visual cortex (V1) receive sensory inputs that describe small, local regions of the visual scene and cortical feedback inputs from higher visual areas processing the global scene context. Investigating the spatial precision of this visual contextual modulation will contribute to our understanding of the functional role of cortical feedback inputs in perceptual computations. We used human functional magnetic resonance imaging (fMRI) to test the spatial precision of contextual feedback inputs to V1 during natural scene processing. We measured brain activity patterns in the stimulated regions of V1 and in regions that we blocked from direct feedforward input, receiving information only from non-feedforward (i.e., feedback and lateral) inputs. We measured the spatial precision of contextual feedback signals by generalising brain activity patterns across parametrically spatially displaced versions of identical images using an MVPA cross-classification approach. We found that fMRI activity patterns in cortical feedback signals predicted our scene-specific features in V1 with a precision of approximately 4 degrees. The stimulated regions of V1 carried more precise scene information than non-stimulated regions; however, these regions also contained information patterns that generalised up to 4 degrees. This result shows that contextual signals relating to the global scene are similarly fed back to V1 when feedforward inputs are either present or absent. Our results are in line with contextual feedback signals from extrastriate areas to V1, describing global scene information and contributing to perceptual computations such as the hierarchical representation of feature boundaries within natural scenes.

4.
Front Hum Neurosci ; 15: 750417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803635

RESUMO

Peripheral vision has different functional priorities for mammals than foveal vision. One of its roles is to monitor the environment while central vision is focused on the current task. Becoming distracted too easily would be counterproductive in this perspective, so the brain should react to behaviourally relevant changes. Gist processing is good for this purpose, and it is therefore not surprising that evidence from both functional brain imaging and behavioural research suggests a tendency to generalize and blend information in the periphery. This may be caused by the balance of perceptual influence in the periphery between bottom-up (i.e., sensory information) and top-down (i.e., prior or contextual information) processing channels. Here, we investigated this interaction behaviourally using a peripheral numerosity discrimination task with top-down and bottom-up manipulations. Participants compared numerosity between the left and right peripheries of a screen. Each periphery was divided into a centre and a surrounding area, only one of which was a task relevant target region. Our top-down task modulation was the instruction which area to attend - centre or surround. We varied the signal strength by altering the stimuli durations i.e., the amount of information presented/processed (as a combined bottom-up and recurrent top-down feedback factor). We found that numerosity perceived in target regions was affected by contextual information in neighbouring (but irrelevant) areas. This effect appeared as soon as stimulus duration allowed the task to be reliably performed and persisted even at the longest duration (1 s). We compared the pattern of results with an ideal-observer model and found a qualitative difference in the way centre and surround areas interacted perceptually in the periphery. When participants reported on the central area, the irrelevant surround would affect the response as a weighted combination - consistent with the idea of a receptive field focused in the target area to which irrelevant surround stimulation leaks in. When participants report on surround, we can best describe the response with a model in which occasionally the attention switches from task relevant surround to task irrelevant centre - consistent with a selection model of two competing streams of information. Overall our results show that the influence of spatial context in the periphery is mandatory but task dependent.

5.
J Vis ; 21(7): 5, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34259828

RESUMO

The promise of artificial intelligence in understanding biological vision relies on the comparison of computational models with brain data with the goal of capturing functional principles of visual information processing. Convolutional neural networks (CNN) have successfully matched the transformations in hierarchical processing occurring along the brain's feedforward visual pathway, extending into ventral temporal cortex. However, we are still to learn if CNNs can successfully describe feedback processes in early visual cortex. Here, we investigated similarities between human early visual cortex and a CNN with encoder/decoder architecture, trained with self-supervised learning to fill occlusions and reconstruct an unseen image. Using representational similarity analysis (RSA), we compared 3T functional magnetic resonance imaging (fMRI) data from a nonstimulated patch of early visual cortex in human participants viewing partially occluded images, with the different CNN layer activations from the same images. Results show that our self-supervised image-completion network outperforms a classical object-recognition supervised network (VGG16) in terms of similarity to fMRI data. This work provides additional evidence that optimal models of the visual system might come from less feedforward architectures trained with less supervision. We also find that CNN decoder pathway activations are more similar to brain processing compared to encoder activations, suggesting an integration of mid- and low/middle-level features in early visual cortex. Challenging an artificial intelligence model to learn natural image representations via self-supervised learning and comparing them with brain data can help us to constrain our understanding of information processing, such as neuronal predictive coding.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Inteligência Artificial , Humanos , Redes Neurais de Computação , Córtex Visual/diagnóstico por imagem , Percepção Visual
6.
Behav Brain Sci ; 43: e142, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32645808

RESUMO

Predictive processing as a computational motif of the neocortex needs to be elaborated into theories of higher cognitive functions that include simulating future behavioural outcomes. We contribute to the neuroscientific perspective of predictive processing as a foundation for the proposed representational architectures of the mind.


Assuntos
Neocórtex , Cognição , Neurônios
7.
Sci Rep ; 10(1): 7565, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371891

RESUMO

At ultra-high field, fMRI voxels can span the sub-millimeter range, allowing the recording of blood oxygenation level dependent (BOLD) responses at the level of fundamental units of neural computation, such as cortical columns and layers. This sub-millimeter resolution, however, is only nominal in nature as a number of factors limit the spatial acuity of functional voxels. Multivoxel Pattern Analysis (MVPA) may provide a means to detect information at finer spatial scales that may otherwise not be visible at the single voxel level due to limitations in sensitivity and specificity. Here, we evaluate the spatial scale of stimuli specific BOLD responses in multivoxel patterns exploited by linear Support Vector Machine, Linear Discriminant Analysis and Naïve Bayesian classifiers across cortical depths in V1. To this end, we artificially misaligned the testing relative to the training portion of the data in increasing spatial steps, then investigated the breakdown of the classifiers' performances. A one voxel shift led to a significant decrease in decoding accuracy (p < 0.05) across all cortical depths, indicating that stimulus specific responses in a multivoxel pattern of BOLD activity exploited by multivariate decoders can be as precise as the nominal resolution of single voxels (here 0.8 mm isotropic). Our results further indicate that large draining vessels, prominently residing in proximity of the pial surface, do not, in this case, hinder the ability of MVPA to exploit fine scale patterns of BOLD signals. We argue that tailored analytical approaches can help overcoming limitations in high-resolution fMRI and permit studying the mesoscale organization of the human brain with higher sensitivities.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Modelos Teóricos , Oxigênio/metabolismo , Algoritmos , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte
8.
J Neurosci ; 39(47): 9410-9423, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31611306

RESUMO

Human behavior is dependent on the ability of neuronal circuits to predict the outside world. Neuronal circuits in early visual areas make these predictions based on internal models that are delivered via non-feedforward connections. Despite our extensive knowledge of the feedforward sensory features that drive cortical neurons, we have a limited grasp on the structure of the brain's internal models. Progress in neuroscience therefore depends on our ability to replicate the models that the brain creates internally. Here we record human fMRI data while presenting partially occluded visual scenes. Visual occlusion allows us to experimentally control sensory input to subregions of visual cortex while internal models continue to influence activity in these regions. Because the observed activity is dependent on internal models, but not on sensory input, we have the opportunity to map visual features conveyed by the brain's internal models. Our results show that activity related to internal models in early visual cortex are more related to scene-specific features than to categorical or depth features. We further demonstrate that behavioral line drawings provide a good description of internal model structure representing scene-specific features. These findings extend our understanding of internal models, showing that line drawings provide a window into our brains' internal models of vision.SIGNIFICANCE STATEMENT We find that fMRI activity patterns corresponding to occluded visual information in early visual cortex fill in scene-specific features. Line drawings of the missing scene information correlate with our recorded activity patterns, and thus to internal models. Despite our extensive knowledge of the sensory features that drive cortical neurons, we have a limited grasp on the structure of our brains' internal models. These results therefore constitute an advance to the field of neuroscience by extending our knowledge about the models that our brains construct to efficiently represent and predict the world. Moreover, they link a behavioral measure to these internal models, which play an active role in many components of human behavior, including visual predictions, action planning, and decision making.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
9.
Front Neuroanat ; 12: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065634

RESUMO

This review article addresses the function of the layers of the cerebral cortex. We develop the perspective that cortical layering needs to be understood in terms of its functional anatomy, i.e., the terminations of synaptic inputs on distinct cellular compartments and their effect on cortical activity. The cortex is a hierarchical structure in which feed forward and feedback pathways have a layer-specific termination pattern. We take the view that the influence of synaptic inputs arriving at different cortical layers can only be understood in terms of their complex interaction with cellular biophysics and the subsequent computation that occurs at the cellular level. We use high-resolution fMRI, which can resolve activity across layers, as a case study for implementing this approach by describing how cognitive events arising from the laminar distribution of inputs can be interpreted by taking into account the properties of neurons that span different layers. This perspective is based on recent advances in measuring subcellular activity in distinct feed-forward and feedback axons and in dendrites as they span across layers.

10.
Neuroimage ; 180(Pt A): 280-290, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28951158

RESUMO

Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs.


Assuntos
Mapeamento Encefálico/métodos , Retroalimentação , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
11.
Trends Cogn Sci ; 22(2): 95-97, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269195

RESUMO

Although theories of predictive coding in the brain abound, we lack key pieces of neuronal data to support these theories. Recently, Schwiedrzik and Freiwald found neurophysiological evidence for predictive codes throughout the face-processing hierarchy in macaque cortex. We highlight how these data enhance our knowledge of cortical information processing, and the impact of this more broadly.


Assuntos
Macaca , Reconhecimento Visual de Modelos , Animais , Encéfalo , Mapeamento Encefálico , Neurônios
12.
Sci Rep ; 7(1): 16538, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184060

RESUMO

Predictive coding theories propose that the brain creates internal models of the environment to predict upcoming sensory input. Hierarchical predictive coding models of vision postulate that higher visual areas generate predictions of sensory inputs and feed them back to early visual cortex. In V1, sensory inputs that do not match the predictions lead to amplified brain activation, but does this amplification process dynamically update to new retinotopic locations with eye-movements? We investigated the effect of eye-movements in predictive feedback using functional brain imaging and eye-tracking whilst presenting an apparent motion illusion. Apparent motion induces an internal model of motion, during which sensory predictions of the illusory motion feed back to V1. We observed attenuated BOLD responses to predicted stimuli at the new post-saccadic location in V1. Therefore, pre-saccadic predictions update their retinotopic location in time for post-saccadic input, validating dynamic predictive coding theories in V1.


Assuntos
Neurorretroalimentação , Estimulação Luminosa , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Movimento (Física) , Percepção de Movimento , Movimentos Sacádicos , Adulto Jovem
13.
Trends Neurosci ; 40(5): 255-256, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363477

RESUMO

Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.


Assuntos
Atenção/fisiologia , Memória/fisiologia , Córtex Visual/fisiologia , Humanos
14.
Brain Cogn ; 112: 54-57, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814926

RESUMO

The cortex constitutes the largest area of the human brain. Yet we have only a basic understanding of how the cortex performs one vital function: the integration of sensory signals (carried by feedforward pathways) with internal representations (carried by feedback pathways). A multi-scale, multi-species approach is essential for understanding the site of integration, computational mechanism and functional role of this processing. To improve our knowledge we must rely on brain imaging with improved spatial and temporal resolution and paradigms which can measure internal processes in the human brain, and on the bridging of disciplines in order to characterize this processing at cellular and circuit levels. We highlight apical amplification as one potential mechanism for integrating feedforward and feedback inputs within pyramidal neurons in the rodent brain. We reflect on the challenges and progress in applying this model neuronal process to the study of human cognition. We conclude that cortical-layer specific measures in humans will be an essential contribution for better understanding the landscape of information in cortical feedback, helping to bridge the explanatory gap.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Retroalimentação Fisiológica/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Mapeamento Encefálico , Humanos , Roedores
16.
Curr Biol ; 25(20): 2690-5, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441356

RESUMO

Neuronal cortical circuitry comprises feedforward, lateral, and feedback projections, each of which terminates in distinct cortical layers [1-3]. In sensory systems, feedforward processing transmits signals from the external world into the cortex, whereas feedback pathways signal the brain's inference of the world [4-11]. However, the integration of feedforward, lateral, and feedback inputs within each cortical area impedes the investigation of feedback, and to date, no technique has isolated the feedback of visual scene information in distinct layers of healthy human cortex. We masked feedforward input to a region of V1 cortex and studied the remaining internal processing. Using high-resolution functional brain imaging (0.8 mm(3)) and multivoxel pattern information techniques, we demonstrate that during normal visual stimulation scene information peaks in mid-layers. Conversely, we found that contextual feedback information peaks in outer, superficial layers. Further, we found that shifting the position of the visual scene surrounding the mask parametrically modulates feedback in superficial layers of V1. Our results reveal the layered cortical organization of external versus internal visual processing streams during perception in healthy human subjects. We provide empirical support for theoretical feedback models such as predictive coding [10, 12] and coherent infomax [13] and reveal the potential of high-resolution fMRI to access internal processing in sub-millimeter human cortex.


Assuntos
Retroalimentação Fisiológica , Córtex Visual/fisiologia , Vias Visuais , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa
17.
Front Psychol ; 5: 1223, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414677

RESUMO

Closing the structure-function divide is more challenging in the brain than in any other organ (Lichtman and Denk, 2011). For example, in early visual cortex, feedback projections to V1 can be quantified (e.g., Budd, 1998) but the understanding of feedback function is comparatively rudimentary (Muckli and Petro, 2013). Focusing on the function of feedback, we discuss how textbook descriptions mask the complexity of V1 responses, and how feedback and local activity reflects not only sensory processing but internal brain states.

18.
Behav Brain Sci ; 36(3): 221, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23663531

RESUMO

Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models).


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Ciência Cognitiva/tendências , Percepção/fisiologia , Humanos
19.
Curr Opin Neurobiol ; 23(2): 195-201, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402951

RESUMO

The strongest connections to V1 are fed back from neighbouring area V2 and from a network of higher cortical areas (e.g. V3, V5, LOC, IPS and A1), transmitting the results of cognitive operations such as prediction, attention and imagination. V1 is therefore at the receiving end of a complex cortical processing cascade and not only at the entrance stage of cortical processing of retinal input. One elegant strategy to investigate this information-rich feedback to V1 is to eliminate feedforward input, that is, exploit V1's retinotopic organisation to isolate subregions receiving no direct bottom-up stimulation. We highlight the diverse mechanisms of cortical feedback, ranging from gain control to predictive coding, and conclude that V1 is involved in rich internal communication processes.


Assuntos
Rede Nervosa/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Cognição/fisiologia , Retroalimentação Sensorial , Humanos , Memória/fisiologia , Estimulação Luminosa , Percepção Visual
20.
Eur J Neurosci ; 37(7): 1130-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23373719

RESUMO

Higher visual areas in the occipitotemporal cortex contain discrete regions for face processing, but it remains unclear if V1 is modulated by top-down influences during face discrimination, and if this is widespread throughout V1 or localized to retinotopic regions processing task-relevant facial features. Employing functional magnetic resonance imaging (fMRI), we mapped the cortical representation of two feature locations that modulate higher visual areas during categorical judgements - the eyes and mouth. Subjects were presented with happy and fearful faces, and we measured the fMRI signal of V1 regions processing the eyes and mouth whilst subjects engaged in gender and expression categorization tasks. In a univariate analysis, we used a region-of-interest-based general linear model approach to reveal changes in activation within these regions as a function of task. We then trained a linear pattern classifier to classify facial expression or gender on the basis of V1 data from 'eye' and 'mouth' regions, and from the remaining non-diagnostic V1 region. Using multivariate techniques, we show that V1 activity discriminates face categories both in local 'diagnostic' and widespread 'non-diagnostic' cortical subregions. This indicates that V1 might receive the processed outcome of complex facial feature analysis from other cortical (i.e. fusiform face area, occipital face area) or subcortical areas (amygdala).


Assuntos
Expressão Facial , Percepção de Forma , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Olho , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Boca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...