Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38920106

RESUMO

Noradrenaline (NA) and serotonin (5-HT) induce nociception and antinociception. This antagonistic effect can be explained by the dose and type of activated receptors. We investigated the existence of synergism between the noradrenergic and serotonergic systems during peripheral antinociception. The paw pressure test was performed in mice that had increased sensitivity by intraplantar injection of prostaglandin E2 (PGE2). Noradrenaline (80 ng) administered intraplantarly induced an antinociceptive effect, that was reversed by the administration of selective antagonists of serotoninergic receptors 5-HT1B isamoltan, 5-HT1D BRL15572, 5-HT2A ketanserin, 5-HT3 ondansetron, but not by selective receptor antagonist 5-HT7 SB-269970. The administration of escitalopram, a serotonin reuptake inhibitor, potentiated the antinociceptive effect at a submaximal dose of NA. These results, indicate the existence of synergism between the noradrenergic and serotonergic systems in peripheral antinociception in mice.


Assuntos
Norepinefrina , Receptores de Serotonina , Antagonistas da Serotonina , Serotonina , Animais , Camundongos , Norepinefrina/metabolismo , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Masculino , Receptores de Serotonina/metabolismo , Dinoprostona/metabolismo , Citalopram/farmacologia , Nociceptividade/efeitos dos fármacos , Analgésicos/farmacologia , Ondansetron/farmacologia , Ketanserina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
2.
Neurosci Lett ; 818: 137536, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898181

RESUMO

It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 µg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 µg) and AM630 (25, 50 and 100 µg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 µg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 µg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 µg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 µg) and by the selective inhibitor for the neuronal isoform LNPA (24 µg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 µg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 µg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.


Assuntos
Canabinoides , Camundongos , Animais , Canabinoides/metabolismo , Analgésicos/farmacologia , Serotonina/farmacologia , Bloqueadores dos Canais de Potássio , Receptores de Canabinoides , Trifosfato de Adenosina , Hiperalgesia/metabolismo
3.
Eur J Pharmacol ; 865: 172808, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738939

RESUMO

Ketamine is a drug largely used in clinical practice as an anesthetic and it can also be used as an analgesic to manage chronic pain symptoms. Despite its interactions with several other signaling systems such as cholinergic, serotoninergic and adrenergic, it is accepted that NMDA receptor antagonism is the main mechanism of action of this drug. In this study we investigated the actions of endogenous opioids in the mechanism of peripheral analgesia induced by ketamine. The nociceptive threshold for mechanical stimuli was measured in Swiss mice using the Randall and Selitto test. The drugs used in this study were administered via intraplantar injection. Our results demonstrated that non selective opioid receptor antagonism (naloxone), selective µ- and δ-opioid receptors antagonism (clocinamox and naltrindole, respectively) but not κ-opioid receptor antagonism (nor-binaltorphimine NORBNI) antagonized ketamine-induced peripheral antinociception in a dose-dependent manner. In addition, administration of aminopeptidase inhibitor bestatin significantly potentiated ketamine-induced peripheral antinociception. Ketamine injection in the right hind paw induced ß-endorphine synthesis in the epithelial tissue of the hindpaw. Together these results indicate a role for µ- and δ-opioid receptors and for the endogenous opioid ß-endorphine increased synthesis in ketamine-induced peripheral analgesia mechanism of action.


Assuntos
Analgésicos/uso terapêutico , Ketamina/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides delta , Receptores Opioides mu , Analgésicos/farmacologia , Animais , Cinamatos/farmacologia , Dinoprostona , Ketamina/farmacologia , Masculino , Camundongos , Derivados da Morfina/farmacologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores
4.
Pharmacol Rep ; 70(4): 784-788, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29940509

RESUMO

BACKGROUND: The aim of this study was to investigate this involvement in not inflammatory model of pain and which opioid receptor subtype mediates noradrenaline-induced peripheral antinociception. Noradrenaline is involved in the intrinsic control of pain-inducing pro-nociceptive effects in the primary afferent nociceptors. However, inflammation can induce various plastic changes in the central and peripheral noradrenergic system that, upon interaction with the immune system, may contribute, in part, to peripheral antinociception. METHODS: Hyperalgesia was induced by intraplantar injection of prostaglandin E2 (PGE2, 2µg) into the plantar surface of the right hind paw and the paw pressure test to evaluated the hyperalgesia was used. Noradrenaline (NA) was administered locally into right hind paw of Wistar rat (160-200g) alone and after either agents, α2-adrenoceptor antagonist yohimbine, α1-adrenoceptor antagonist prazosin, ß-adrenoceptor antagonist propranolol, µ-opioid antagonist clocinnamox, δ-opioid antagonist naltrindole and κ-opioid antagonist nor-binaltorfimina. In addition, the enkephalinase inhibitor bestatin was administered prior to NA low dose. RESULTS: Intraplantar injection of NA induced peripheral antinociception against hyperalgesia induced by PGE2. This effect was reversed, in dose dependent manner, by intraplantar injection of yohimbine, prazosin, propranolol, clocinnamox and naltrindole. However, injection of nor-binaltorfimina did not alter antinociception of NA after PGE2 hyperalgesia. Bestatin intensified the antinociceptive effects of low-dose of NA. CONCLUSION: Besides the α2-adrenoceptor, the present data provide evidence that, in absence of inflammation, NA activating α1 and ß-adrenoceptor induce endogenous opioid release to produce peripheral antinociceptive effect by µ and δ opioid receptors.


Assuntos
Hiperalgesia/prevenção & controle , Norepinefrina/farmacologia , Peptídeos Opioides/metabolismo , Analgésicos/farmacologia , Animais , Cinamatos/farmacologia , Dinoprostona , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Derivados da Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Norepinefrina/antagonistas & inibidores , Medição da Dor/efeitos dos fármacos , Prazosina/farmacologia , Propranolol/farmacologia , Ratos , Ioimbina/farmacologia
5.
Biomed Pharmacother ; 97: 1434-1437, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156533

RESUMO

PURPOSE: Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. METHODS: The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE2 (2 µg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. RESULTS: The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 µg), naltrindole (60 µg) and nor-binaltorfimina (200 µg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 µg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). CONCLUSIONS: These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes.


Assuntos
Analgésicos/farmacologia , Dor/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Serotonina/farmacologia , Analgésicos/administração & dosagem , Animais , Cinamatos/farmacologia , Dinoprostona/administração & dosagem , Modelos Animais de Doenças , Masculino , Camundongos , Derivados da Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides/metabolismo , Dor/patologia , Receptores Opioides/metabolismo , Serotonina/administração & dosagem
6.
Eur J Pharmacol ; 767: 94-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26460149

RESUMO

The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.


Assuntos
Hiperalgesia/prevenção & controle , Medição da Dor/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotonina/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Dinoprostona , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Ketanserina/farmacologia , Masculino , Camundongos , Ondansetron/farmacologia , Fenóis/farmacologia , Piperazinas/farmacologia , Propanolaminas/farmacologia , Antagonistas da Serotonina/farmacologia , Sulfonamidas/farmacologia
7.
Rev. méd. Minas Gerais ; 25(4)jan. 2015.
Artigo em Português | LILACS-Express | LILACS | ID: lil-774717

RESUMO

Paciente feminina, faioderma, 24 anos, residente em Belo Horizonte ? MG, sem sintomas oculares prévios, queixa de aparecimento de manchas avermelhadas no olho direito há 30 dias. Ao exame externo apresenta olhos alinhados nas diversas posições do olhar, pupilas isocóricas, circulares e centradas, com reflexos sem alterações. Pálpebras sem alterações. Na conjuntiva bulbar do olho direito observam-seduas manchas rosadas que, ao exame biomicroscópico, apresentam-se como massas moles, lobuladas, cada qual com seu pedículo. Acuidade visual, fundoscopia e pressão intraocular sem alterações.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...