Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38464034

RESUMO

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur. Methods: Primary rabbit corneal keratocytes were cultured in either defined serum-free media (SF), fetal bovine serum (FBS) containing media, or in the presence of TGF-ß1 to induce keratocyte, fibroblast, or myofibroblast phenotypes, respectively. Bulk RNA sequencing followed by bioinformatic analyses was performed to identify significant differentially expressed genes (DEGs) and enriched biological pathways for each phenotype. Results: Genes commonly associated with keratocytes, fibroblasts, or myofibroblasts showed high relative expression in SF, FBS, or TGF-ß1 culture conditions, respectively. Differential expression and functional analyses revealed novel DEGs for each cell type, as well as enriched pathways indicative of differences in proliferation, apoptosis, extracellular matrix (ECM) synthesis, cell-ECM interactions, cytokine signaling, and cell mechanics. Conclusions: Overall, these data demonstrate distinct transcriptional differences among cultured corneal keratocytes, fibroblasts, and myofibroblasts. We have identified genes and signaling pathways that may play important roles in keratocyte differentiation, including many related to mechanotransduction and ECM biology. Our findings have revealed novel molecular markers for each cell type, as well as possible targets for modulating cell behavior and promoting physiological corneal wound healing.

2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496568

RESUMO

During corneal wound healing, stromal keratocytes transform into a repair phenotype that is driven by the release of cytokines, like transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB). Previous work has shown that TGF-ß1 promotes the myofibroblast differentiation of corneal keratocytes in a manner that depends on PDGF signaling. In addition, changes in mechanical properties are known to regulate the TGF-ß1-mediated differentiation of cultured keratocytes. While PDGF signaling acts synergistically with TGF-ß1 during myofibroblast differentiation, how treatment with multiple growth factors affects stiffness-dependent differences in keratocyte behavior is unknown. Here, we treated primary corneal keratocytes with PDGF-BB and TGF-ß1 and cultured them on polyacrylamide (PA) substrata of different stiffnesses. In the presence of TGF-ß1 alone, the cells underwent stiffness-dependent myofibroblast differentiation. On stiff substrata, the cells developed robust stress fibers, exhibited high levels of ⍺-SMA staining, formed large focal adhesions (FAs), and exerted elevated contractile forces, whereas cells in a compliant microenvironment showed low levels of ⍺-SMA immunofluorescence, formed smaller focal adhesions, and exerted decreased contractile forces. When the cultured keratocytes were treated simultaneously with PDGF-BB however, increased levels of ⍺-SMA staining and stress fiber formation were observed on compliant substrata, even though the cells did not exhibit elevated contractility or focal adhesion size. Pharmacological inhibition of PDGF signaling disrupted the myofibroblast differentiation of cells cultured on substrata of all stiffnesses. These results indicate that treatment with PDGF-BB can decouple molecular markers of myofibroblast differentiation from the elevated contractile phenotype otherwise associated with these cells, suggesting that crosstalk in the mechanotransductive signaling pathways downstream of TGF-ß1 and PDGF-BB can regulate the stiffness-dependent differentiation of cultured keratocytes. Statement of Significance: In vitro experiments have shown that changes in ECM stiffness can regulate the differentiation of myofibroblasts. Typically, these assays involve the use of individual growth factors, but it is unclear how stiffness-dependent differences in cell behavior are affected by multiple cytokines. Here, we used primary corneal keratocytes to show that treatment with both TGF-ß1 and PDGF-BB disrupts the dependency of myofibroblast differentiation on substratum stiffness. In the presence of both growth factors, keratocytes on soft substrates exhibited elevated ⍺-SMA immunofluorescence without a corresponding increase in contractility or focal adhesion formation. This result suggests that molecular markers of myofibroblast differentiation can be dissociated from the elevated contractile behavior associated with the myofibroblast phenotype, suggesting potential crosstalk in mechanotransductive signaling pathways downstream of TGF-ß1 and PDGF-BB.

3.
Langmuir ; 40(5): 2551-2561, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277615

RESUMO

Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 µm. Although the cell area (∼2500 µm2), cell length (∼160 µm), and projected nuclear area (∼175 µm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 µm2) as the micropattern width decreased from 750 to 50 µm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.


Assuntos
Matriz Extracelular , Cicatrização , Colágeno/química
4.
Exp Eye Res ; 233: 109523, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271309

RESUMO

Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 µm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 µm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.


Assuntos
Ceratectomia Fotorrefrativa , Cicatrização , Animais , Coelhos , Substância Própria/metabolismo , Movimento Celular , Actinas/metabolismo , Diferenciação Celular , Fibrose , Reagentes de Ligações Cruzadas/farmacologia
5.
J Funct Biomater ; 14(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103307

RESUMO

During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior.

6.
Am J Ophthalmol ; 251: 77-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36898493

RESUMO

PURPOSE: Müller muscle-conjunctival resection (MMCR) is a popular posterior/internal surgical approach to cases of mild to moderate blepharoptosis with good levator function. MMCR necessitates the removal of healthy conjunctiva and exposes the cornea to suture material. The goal of this study is to describe a novel sutureless conjunctiva-sparing Müllerectomy (CSM) surgery and demonstrate its long-term efficacy, efficiency, and safety. DESIGN: IRB approved retrospective study of patients undergoing sutureless conjunctiva-sparing posterior ptosis repair surgery. METHODS: The medical records of 100 patients (171 eyes) who underwent sutureless CSM with a minimum follow-up interval of 6 months were retrospectively reviewed. Photographs were analyzed using ImageJ software. Outcome measures were derived from margin reflex distance 1 (MRD1) and palpebral fissure height (PFH) at various postoperative timepoints. RESULTS: Mean ΔMRD1 and ΔPFH at 6 months were 2.85 ± 0.98 mm and 2.60 ± 1.38 mm, respectively. Symmetry within 1 mm was observed 91% of cases. Sutureless CSM took 4.42 minutes on average compared to 8.45 minutes for traditional MMCR. There were no corneal abrasions or ocular complications. The reoperation rate was 2.3% (1 case of overcorrection and 3 cases of undercorrection) per eye. CONCLUSIONS: Sutureless CSM is a promising alternative to traditional MMCR and sutured CSM based on long-term outcomes, symmetry, shorter operative time, and low complication rate. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Assuntos
Blefaroplastia , Blefaroptose , Humanos , Blefaroptose/cirurgia , Estudos Retrospectivos , Músculos Oculomotores/cirurgia , Túnica Conjuntiva/cirurgia , Blefaroplastia/métodos , Resultado do Tratamento
7.
Ophthalmol Sci ; 3(1): 100214, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36275201

RESUMO

Objective: Seventy percent of Fuchs' endothelial corneal dystrophy (FECD) cases are caused by an intronic trinucleotide repeat expansion in the transcription factor 4 gene (TCF4). The objective of this study was to characterize the corneal subbasal nerve plexus and corneal haze in patients with FECD with (RE+) and without the trinucleotide repeat expansion (RE-) and to assess the correlation of these parameters with disease severity. Design: Cross-sectional, single-center study. Participants: Fifty-two eyes of 29 subjects with a modified Krachmer grade of FECD severity from 1 to 6 were included in the study. Fifteen of the 29 subjects carried an expanded TCF4 allele length of ≥ 40 cytosine-thymine-guanine repeats (RE+). Main Outcomes Measures: In vivo confocal microscopy assessments of corneal nerve fiber length (CNFL), corneal nerve branch density, corneal nerve fiber density (CNFD), and anterior corneal stromal backscatter (haze); Scheimpflug tomography densitometry measurements of haze in anterior, central, and posterior corneal layers. Results: Using confocal microscopy, we detected a negative correlation between FECD severity and both CNFL and CNFD in the eyes of RE+ subjects (Spearman ρ = -0.45, P = 0.029 and ρ = -0.62, P = 0.0015, respectively) but not in the eyes of RE- subjects. Additionally, CNFD negatively correlated with the repeat length of the expanded allele in the RE+ subjects (Spearman ρ = -0.42, P = 0.038). We found a positive correlation between anterior stromal backscatter and severity in both the RE+ and RE- groups (ρ = 0.60, P = 0.0023 and ρ = 0.44, P = 0.024, respectively). The anterior, central, and posterior Scheimpflug densitometry measurements also positively correlated with severity in both the RE+ and RE- groups (P = 5.5 × 10-5, 2.5 × 10-4, and 2.9 × 10-4, respectively, after adjusting for the expansion status in a pooled analysis. However, for patients with severe FECD (Krachmer grades 5 and 6), the posterior densitometry measurements were higher in the RE+ group than in the RE- group (P < 0.05). Conclusions: Loss of corneal nerves in FECD supports the classification of the TCF4 trinucleotide repeat expansion disorder as a neurodegenerative disease. Haze in the anterior, central, and posterior cornea correlate with severity, irrespective of the genotype. Quantitative assessments of corneal nerves and corneal haze may be useful to gauge and monitor FECD disease severity in RE+ patients.

8.
Metabolites ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888751

RESUMO

We have previously reported the flavonoid, quercetin, as a metabolic regulator and inhibitor of myofibroblast differentiation in vitro. Our current study evaluated the effects of topical application of quercetin on corneal scar development using two different animal models followed by RNA analysis in vitro. Wild-type C57BL/6J mice were anesthetized and the corneal epithelium and stroma were manually debrided, followed by quercetin (0.5, 1, 5, or 50 mM) or vehicle application. Corneal scarring was assessed for 3 weeks by slit lamp imaging and clinically scored. In a separate animal study, six New Zealand White rabbits underwent lamellar keratectomy surgery, followed by treatment with 5 mM quercetin or vehicle twice daily for three days. Stromal backscattering was assessed at week 3 by in vivo confocal microscopy. In mice, a single dose of 5 mM quercetin reduced corneal scar formation. In rabbits, stromal backscattering was substantially lower in two out of three animals in the quercetin-treated group. In vitro studies of human corneal fibroblasts showed that quercetin modulated select factors of the transforming growth factor-ß (TGF-ß) signaling pathway. These results provide evidence that quercetin may inhibit corneal scarring. Further studies in a larger cohort are required to validate the efficacy and safety of quercetin for clinical applications.

9.
Front Cell Dev Biol ; 10: 886759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693927

RESUMO

Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF-ß1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF-ß1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF-ß1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation (α-SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF-ß1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α-SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF-ß1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.

10.
Exp Eye Res ; 220: 109112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595094

RESUMO

During corneal wound healing, keratocytes present within the corneal stroma become activated into a repair phenotype upon the release of growth factors, such as transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB). The process of injury and repair can lead to changes in the mechanical properties of the tissue, and previous work has shown that the TGF-ß1-mediated myofibroblast differentiation of corneal keratocytes depends on substratum stiffness. It is still unclear, however, if changes in stiffness can modulate keratocyte behavior in response to other growth factors, such as PDGF-BB. Here, we used a polyacrylamide (PA) gel system to determine whether changes in stiffness influence the proliferation and motility of primary corneal keratocytes treated with PDGF-BB. In the presence of PDGF-BB, cells on stiffer substrata exhibited a more elongated morphology and had higher rates of proliferation than cells in a more compliant microenvironment. Using a freeze-injury to assay cell motility, however, we did not observe any stiffness-dependent differences in the migration of keratocytes treated with PDGF-BB. Taken together, these data highlight the importance of biophysical cues during corneal wound healing and suggest that keratocytes respond differently to changes in ECM stiffness in the presence of different growth factors.


Assuntos
Ceratócitos da Córnea , Fator de Crescimento Transformador beta1 , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento Derivado de Plaquetas
11.
Transl Vis Sci Technol ; 10(9): 1, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338722

RESUMO

Purpose: This study aimed to determine the intra- and interobserver repeatability of the new LacryDiag Ocular Surface Analyzer and compare it to a similar all-in-one device, the OCULUS Keratograph 5M. Methods: Thirty healthy subjects aged 18 years and above were recruited for this study. All patients were free of any existing ocular pathology. The LacryDiag Ocular Surface Analyzer was used to evaluate tear meniscus height, interferometry, noninvasive tear break-up time (NIBUT), and meibography. The same or analogous exams were performed using the OCULUS Keratograph 5M. Test equivalation was used to compare data from corresponding examinations. Paired t-tests and coefficient of variation were used to determine inter- and intraobserver repeatability. Bland-Altman analysis was used to determine level of agreement between devices. Results: There were no differences in mean values for tear meniscus height, NIBUT, or tear film interferometry between observers for either device. Significant differences were found between observers for meibography when using the LacryDiag (P = 0.008 for percent loss calculation and P = 0.004 for grading scale). Intra-observer variability for NIBUT was significantly higher for the Keratograph (P = 0.0003 for observer A and P < 0.0001 for observer B). Conclusions: There was a good correlation but poor agreement between devices for a given observer. This was likely influenced by the use of repeated testing and the non-dry eye cohort. Translational Relevance: Both the repeatability of the testing device and the use of multiple outcome measures are essential for the diagnosis and monitoring of patients with dry eye disease (DED).


Assuntos
Síndromes do Olho Seco , Glândulas Tarsais , Síndromes do Olho Seco/diagnóstico , Humanos , Interferometria , Variações Dependentes do Observador , Lágrimas
12.
J Cataract Refract Surg ; 47(8): 1075-1080, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769765

RESUMO

Corneal crosslinking is a U.S. Food and Drug Administration--approved therapy to stiffen the cornea and prevent progression of corneal ectasia in patients with keratoconus. The standard procedure involves removal of the corneal epithelium (epithelial-off) prior to treatment. Variations to the standard procedure include accelerated crosslinking and transepithelial procedures. This study reviewed what is known regarding the risk for infection after epithelial-off crosslinking, the spectrum of pathogens, and clinical outcomes. 26 publications were identified. All eyes were fit with a bandage contact lens postoperatively. Available data indicate that the overall frequency of infectious keratitis after epithelium-off crosslinking is low. Bacterial infections are the most common, with a mean time of presentation of 4.8 days postoperatively. The use of steroids and bandage contact lenses in the immediate postoperative period and/or a history of atopic or herpetic disease were associated with infection. These patients require intense postoperative care with prophylactic antiviral therapy when appropriate.


Assuntos
Ceratite , Ceratocone , Colágeno , Córnea , Reagentes de Ligações Cruzadas , Humanos , Ceratite/diagnóstico , Ceratite/tratamento farmacológico , Ceratocone/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico
13.
Biophys J ; 119(9): 1865-1877, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33080219

RESUMO

After surgery or traumatic injury, corneal wound healing can cause a scarring response that stiffens the tissue and impairs ocular function. This fibrosis is caused in part by the activation of corneal keratocytes from a native mechanically quiescent state to an activated myofibroblastic state. This transformation is tied to signaling downstream of transforming growth factor-ß1 (TGF-ß1). Here, to better understand how biochemical and biophysical cues interact to regulate keratocyte activation and contractility, we cultured primary rabbit corneal keratocytes on flexible substrata of varying stiffness in the presence (or absence) of TGF-ß1. Time-lapse fluorescence microscopy was used to assess changes in keratocyte morphology, as well as to quantify the dynamic traction stresses exerted by cells under different experimental conditions. In other experiments, keratocytes were fixed after 5 days of culture and stained for markers of both contractility and myofibroblastic activation. Treatment with TGF-ß1 elicited distinct phenotypes on substrata of different stiffnesses. Cells on soft (1 kPa) gels formed fewer stress fibers and retained a more dendritic morphology, indicative of a quiescent keratocyte phenotype. Keratocytes cultured on stiff (10 kPa) gels or collagen-coated glass coverslips, however, had broad morphologies, formed abundant stress fibers, exhibited greater levels of α-smooth muscle actin (α-SMA) expression, and exerted larger traction forces. Confocal images of phospho-myosin light chain (pMLC) immunofluorescence, moreover, revealed stiffness-dependent differences in the subcellular distribution of actomyosin contractility, with pMLC localized at the tips of thin cellular processes in mechanically quiescent cells. Importantly, keratocytes cultured in the absence of TGF-ß1 showed no stiffness-dependent differences in α-SMA immunofluorescence, suggesting that a stiff microenvironment alone is insufficient to induce myofibroblastic activation. Taken together, these data suggest that changes in ECM stiffness can modulate the morphology, cytoskeletal organization, and subcellular pattern of force generation in corneal keratocytes treated with TGF-ß1.


Assuntos
Ceratócitos da Córnea , Fator de Crescimento Transformador beta1 , Animais , Células Cultivadas , Córnea , Fibroblastos , Miofibroblastos , Coelhos
14.
Exp Eye Res ; 200: 108228, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919993

RESUMO

In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.


Assuntos
Ceratócitos da Córnea/fisiologia , Matriz Extracelular/metabolismo , Contagem de Células , Diferenciação Celular , Movimento Celular , Células Cultivadas , Ceratócitos da Córnea/citologia , Humanos , Mecanotransdução Celular , Microscopia Confocal
15.
J Mol Med (Berl) ; 98(11): 1639-1656, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964303

RESUMO

Fibulin-3 (F3) is an extracellular matrix glycoprotein found in basement membranes across the body. An autosomal dominant R345W mutation in F3 causes a macular dystrophy resembling dry age-related macular degeneration (AMD), whereas genetic removal of wild-type (WT) F3 protects mice from sub-retinal pigment epithelium (RPE) deposit formation. These observations suggest that F3 is a protein which can regulate pathogenic sub-RPE deposit formation in the eye. Yet the precise role of WT F3 within the eye is still largely unknown. We found that F3 is expressed throughout the mouse eye (cornea, trabecular meshwork (TM) ring, neural retina, RPE/choroid, and optic nerve). We next performed a thorough structural and functional characterization of each of these tissues in WT and homozygous (F3-/-) knockout mice. The corneal stroma in F3-/- mice progressively thins beginning at 2 months, and the development of corneal opacity and vascularization starts at 9 months, which worsens with age. However, in all other tissues (TM, neural retina, RPE, and optic nerve), gross structural anatomy and functionality were similar across WT and F3-/- mice when evaluated using SD-OCT, histological analyses, electron microscopy, scotopic electroretinogram, optokinetic response, and axonal anterograde transport. The lack of noticeable retinal abnormalities in F3-/- mice was confirmed in a human patient with biallelic loss-of-function mutations in F3. These data suggest that (i) F3 is important for maintaining the structural integrity of the cornea, (ii) absence of F3 does not affect the structure or function of any other ocular tissue in which it is expressed, and (iii) targeted silencing of F3 in the retina and/or RPE will likely be well-tolerated, serving as a safe therapeutic strategy for reducing sub-RPE deposit formation in disease. KEY MESSAGES: • Fibulins are expressed throughout the body at varying levels. • Fibulin-3 has a tissue-specific pattern of expression within the eye. • Lack of fibulin-3 leads to structural deformities in the cornea. • The retina and RPE remain structurally and functionally healthy in the absence of fibulin-3 in both mice and humans.


Assuntos
Córnea/metabolismo , Proteínas da Matriz Extracelular/deficiência , Retina/metabolismo , Animais , Biomarcadores , Córnea/patologia , Suscetibilidade a Doenças , Expressão Gênica , Genótipo , Humanos , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Mutação , Especificidade de Órgãos/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
16.
Bioengineering (Basel) ; 7(3)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784578

RESUMO

We previously reported that corneal fibroblasts within 3D fibrin matrices secrete, bind, and organize fibronectin into tracks that facilitate cell spreading and migration. Other cells use these fibronectin tracks as conduits, which leads to the development of an interconnected cell/fibronectin network. In this study, we investigate how cell-induced reorganization of fibrin correlates with fibronectin track formation in response to two growth factors present during wound healing: PDGF BB, which stimulates cell spreading and migration; and TGFß1, which stimulates cellular contraction and myofibroblast transformation. Both PDGF BB and TGFß1 stimulated global fibrin matrix contraction (p < 0.005); however, the cell and matrix patterning were different. We found that, during PDGF BB-induced cell spreading, fibronectin was organized simultaneously with the generation of tractional forces at the leading edge of pseudopodia. Over time this led to the formation of an interconnected network consisting of cells, fibronectin and compacted fibrin tracks. Following culture in TGFß1, cells were less motile, produced significant local fibrin reorganization, and formed fewer cellular connections as compared to PDGF BB (p < 0.005). Although bands of compacted fibrin tracks developed in between neighboring cells, fibronectin labeling was not generally present along these tracks, and the correlation between fibrin and fibronectin labeling was significantly less than that observed in PDGF BB (p < 0.001). Taken together, our results show that cell-induced extracellular matrix (ECM) reorganization can occur independently from fibronectin patterning. Nonetheless, both events seem to be coordinated, as corneal fibroblasts in PDGF BB secrete and organize fibronectin as they preferentially spread along compacted fibrin tracks between cells, producing an interconnected network in which cells, fibronectin and compacted fibrin tracks are highly correlated. This mechanism of patterning could contribute to the formation of organized cellular networks that have been observed following corneal injury and refractive surgery.

17.
Cornea ; 39(10): 1227-1234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32639312

RESUMO

PURPOSE: To investigate the long-term corneal changes in patients with Fuchs endothelial corneal dystrophy contributing to superior postoperative visual outcomes after Descemet membrane endothelial keratoplasty (DMEK) compared with Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS: Using retrospective analysis, we evaluated 9 patients with Fuchs endothelial corneal dystrophy who underwent DSAEK in 1 eye and DMEK in the fellow eye. Patients were genotyped for the triplet repeat expansion in the TCF4 gene and imaged using optical coherence tomography, Scheimpflug imaging, and in vivo confocal microscopy through focusing. RESULTS: Eight of 9 subjects were genotyped, and all were found to harbor the triplet repeat expansion. The average time between endothelial keratoplasty and imaging was 76 ± 22 and 37 ± 9 months after DSAEK and DMEK, respectively. The mean best spectacle-corrected visual acuity (logMAR) was 0.04 ± 0.05 and 0.11 ± 0.03 in the DMEK eyes versus DSAEK eyes (P = 0.02), respectively. Posterior corneal higher order aberrations were less in the DMEK eyes compared with fellow DSAEK eyes (0.25 ± 0.06 and 0.66 ± 0.25, respectively, P ≤ 0.01). Using confocal microscopy through focusing, we found that the persistent anterior stromal haze was correlated between the right and left eyes (R = 0.73, P ≤ 0.05), but total stromal backscattering was higher for the DSAEK eyes (P ≤ 0.05). CONCLUSIONS: DSAEK inherently results in higher total stromal backscattering (haze) compared with DMEK because of the addition of stromal tissue. Lower higher order aberrations of the posterior cornea and lower total stromal backscattering (haze) may both contribute to superior visual outcomes after DMEK compared with DSAEK.


Assuntos
Opacidade da Córnea/fisiopatologia , Substância Própria/fisiopatologia , Aberrações de Frente de Onda da Córnea/fisiopatologia , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior/métodos , Distrofia Endotelial de Fuchs/cirurgia , Aberrometria , Idoso , Idoso de 80 Anos ou mais , Feminino , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/fisiopatologia , Técnicas de Genotipagem , Humanos , Masculino , Microscopia Confocal , Estudos Retrospectivos , Tomografia de Coerência Óptica , Fator de Transcrição 4/genética , Expansão das Repetições de Trinucleotídeos/genética , Acuidade Visual/fisiologia
18.
J Cataract Refract Surg ; 46(9): 1273-1277, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483072

RESUMO

PURPOSE: To compare the effectiveness of femtosecond laser-assisted cataract surgery (FLACS) and conventional phacoemulsification cataract surgery (CPS) by resident surgeons. SETTING: Parkland Memorial Health and Hospital System, Dallas, Texas, USA. DESIGN: Prospective randomized study. METHODS: All surgeries to be performed by postgraduate year 3 and year 4 residents from October 2015 through June 2017 were eligible for inclusion. Patients were required to complete postoperative day 1, week 1, month 1, and month 3 visits. Specular microscopy was performed preoperatively and postoperatively. Surgeries were filmed, and each step was timed and compared. Surgeon and patient surveys were filled out postoperatively. RESULTS: Of the 135 eyes of 96 subjects enrolled in the study, 64 eyes received FLACS and 71 eyes received CPS. There was no significant difference in corrected distance visual acuity (CDVA), either preoperatively or at the postoperative day 1, week 1, month 1, or month 3 visits (P = .469, .539, .701, .777, and .777, respectively). Cumulated dissipated energy and irrigation fluid usage were not different between FLACS and CPS (P = .521 and .368, respectively), nor was there a difference in the reduction of endothelial cell counts postoperatively (P = .881). Wound creation (P = .014), cortical cleanup (P = .009), and IOL implantation (P = .031) were faster in the CPS group. Survey results indicated that the overall patient experience was similar for FLACS and CPS. CONCLUSIONS: This first prospective randomized trial evaluating resident-performed FLACS shows that, in resident hands, FLACS provides similar results to CPS regarding visual acuity, endothelial cell loss, operative time, patient satisfaction, and surgical complication rate.


Assuntos
Extração de Catarata , Terapia a Laser , Facoemulsificação , Humanos , Lasers , Estudos Prospectivos
19.
Cell Tissue Bank ; 21(3): 427-431, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32246221

RESUMO

Assessment of donor suitability and criteria development for tissue donation evaluation which appropriately addresses the risk factors for disease transmission, especially high risk for Hepatitis B or C, HIV or other transmissible diseases as defined by the Food and Drug Administration, FDA, is a continuing concern for tissue banks. The relationship of drug use, especially IV drugs, has been determined to be associated with an increased possibility of reactive serology (Centers for Disease Control and Prevention (USCDC) in Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Hepatitis C questions and answers for health professionals. https://www.cdc.gov/hepatitis/hcv/hcvfaq.htm ; Centers for Disease Control and Prevention (USCDC) in infectious diseases, opioids and injection drug use, 2018. https://www.cdc.gov/pwid/opioid-use.html ; HIH National Institute on Drug Abuse in Health Consequences of Drug Misuse, 2017. https://www.drugabuse.gov/related-topics/health-consequences-drug-misuse ). Therefore, prior drug use determined by medical social history screening frequently results in deferral of a potential donor even when the route of drug administration has not been determined to be intravenous. Because of the association of drug use in numerous cases, which come under Medical Examiner jurisdiction, a possible rule out of a number of otherwise suitable medical examiner cases could occur. This retrospective review of medical examiner cases, tissue bank referrals and tissue donors in a 3-year period examines the relationship, if any, between reactive serology and positive toxicology results. These results would appear to indicate assessment of donor medical social history screening is effective in reducing recovery of high-risk donors.


Assuntos
Testes Sorológicos , Doadores de Tecidos , Distribuição por Idade , Médicos Legistas , Humanos , Estudos Retrospectivos , Risco
20.
Biomed Microdevices ; 21(4): 99, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741114

RESUMO

In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.


Assuntos
Colágeno/metabolismo , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Dispositivos Lab-On-A-Chip , Animais , Fenômenos Biomecânicos , Coelhos , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...