Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(3): e0169490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257413

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. METHODS AND FINDINGS: The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). CONCLUSIONS: TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01565551.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Catecol O-Metiltransferase/genética , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerase-1/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D2/genética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
3.
Genet Med ; 18(2): 174-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25880441

RESUMO

PURPOSE: Carrier screening for mutations contributing to cystic fibrosis (CF) is typically accomplished with panels composed of variants that are clinically validated primarily in patients of European descent. This approach has created a static genetic and phenotypic profile for CF. An opportunity now exists to reevaluate the disease profile of CFTR at a global population level. METHODS: CFTR allele and genotype frequencies were obtained from a nonpatient cohort with more than 60,000 unrelated personal genomes collected by the Exome Aggregation Consortium. Likely disease-contributing mutations were identified with the use of public database annotations and computational tools. RESULTS: We identified 131 previously described and likely pathogenic variants and another 210 untested variants with a high probability of causing protein damage. None of the current genetic screening panels or existing CFTR mutation databases covered a majority of deleterious variants in any geographical population outside of Europe. CONCLUSIONS: Both clinical annotation and mutation coverage by commercially available targeted screening panels for CF are strongly biased toward detection of reproductive risk in persons of European descent. South and East Asian populations are severely underrepresented, in part because of a definition of disease that preferences the phenotype associated with European-typical CFTR alleles.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Testes Genéticos , Programas de Rastreamento , Triagem de Portadores Genéticos , Humanos , Mutação , Fatores de Risco
4.
Nat Commun ; 6: 8581, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26466022

RESUMO

Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.


Assuntos
Lesões Encefálicas , Biologia Computacional/métodos , Modelos Animais de Doenças , Traumatismos da Medula Espinal , Animais , Interpretação Estatística de Dados , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-25250242

RESUMO

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.


Assuntos
Escherichia coli O157 , Escherichia coli , Viabilidade Microbiana , Microbiologia do Solo , Arizona , Carga Bacteriana , California , DNA Bacteriano , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli O157/classificação , Escherichia coli O157/genética , Microbiologia de Alimentos , Análise de Sequência de DNA
6.
Mol Cell Proteomics ; 10(1): M110.000976, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20930037

RESUMO

We present a comprehensive analysis of the human methyltransferasome. Primary sequences, predicted secondary structures, and solved crystal structures of known methyltransferases were analyzed by hidden Markov models, Fisher-based statistical matrices, and fold recognition prediction-based threading algorithms to create a model, or profile, of each methyltransferase superfamily. These profiles were used to scan the human proteome database and detect novel methyltransferases. 208 proteins in the human genome are now identified as known or putative methyltransferases, including 38 proteins that were not annotated previously. To date, 30% of these proteins have been linked to disease states. Possible substrates of methylation for all of the SET domain and SPOUT methyltransferases as well as 100 of the 131 seven-ß-strand methyltransferases were surmised from sequence similarity clusters based on alignments of the substrate-specific domains.


Assuntos
Metiltransferases/metabolismo , Proteoma/metabolismo , Biologia Computacional , Humanos , Metiltransferases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma/química , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Mol Cell Proteomics ; 8(7): 1516-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19351663

RESUMO

A new program (Multiple Motif Scanning) was developed to scan the Saccharomyces cerevisiae proteome for Class I S-adenosylmethionine-dependent methyltransferases. Conserved Motifs I, Post I, II, and III were identified and expanded in known methyltransferases by primary sequence and secondary structural analysis through hidden Markov model profiling of both a yeast reference database and a reference database of methyltransferases with solved three-dimensional structures. The roles of the conserved amino acids in the four motifs of the methyltransferase structure and function were then analyzed to expand the previously defined motifs. Fisher-based negative log statistical matrix sets were developed from the prevalence of amino acids in the motifs. Multiple Motif Scanning is able to scan the proteome and score different combinations of the top fitting sequences for each motif. In addition, the program takes into account the conserved number of amino acids between the motifs. The output of the program is a ranked list of proteins that can be used to identify new methyltransferases and to reevaluate the assignment of previously identified putative methyltransferases. The Multiple Motif Scanning program can be used to develop a putative list of enzymes for any type of protein that has one or more motifs conserved at variable spacings and is freely available (www.chem.ucla.edu/files/MotifSetup.Zip). Finally hidden Markov model profile clustering analysis was used to subgroup Class I methyltransferases into groups that reflect their methyl-accepting substrate specificity.


Assuntos
Motivos de Aminoácidos , Metiltransferases/genética , Proteoma/análise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Análise de Sequência de Proteína/métodos , Software , Algoritmos , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Humanos , Metiltransferases/análise , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...