Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(19): 27509-27530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573572

RESUMO

Catastrophic oil spill is one of the major issues to the environment. Various methods have been used to treat oil spillage including in situ burning, the use of skimmers, dispersants, bioremediation, dispersing agents, oil sorbents, and biological agents. Application of oil sorbent is one of the effective solutions in oil spill clean-up. Polymers are sustainable extraordinary materials for the treatment of oil spillage due to their special physicochemical characteristics such as high porosity, good hydrophobicity, and reusability. Polymers are modified using suitable chemical reagents and their hydrophobicity is enhanced, making them suitable for oil spill clean-up. The present manuscript is an attempt to summarize the study of chemical modifications done on a polymer polyurethane (PU) for achieving the desirable properties, for efficient oil spill clean-up. A patent analysis has been carried out for the leading countries, top inventors, leading assignees, trends of patent publications, citation analysis, and summary of granted patents in the area of the use of a polymer Polyurethane (PU) for oil spill clean-up.


Assuntos
Recuperação e Remediação Ambiental , Poluição por Petróleo , Poliuretanos , Poliuretanos/química , Recuperação e Remediação Ambiental/métodos
2.
RSC Adv ; 13(36): 24887-24898, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37614786

RESUMO

Sugar beet crown (SBC) waste was employed to produce sustainable activated carbon (AC) by a thermo-chemical activation procedure using a fixed ratio of H3PO4/SBC (1 : 1 w/w ratio) at 550 °C/2 h. An activated carbon/polyamide nano-composite (AC/PA) was also prepared through the polymerization of the fabricated AC (90%) with polyamide (PA, 10%) synthetic textile waste using a proper dissolving agent at a specified w/w ratio with the employed polymer (formic acid/PA = 82/18%). Both AC and its derivative AC/PA were employed in the remediation of dyes from industrial wastewater in column systems, and their efficiencies were compared at various applied experimental conditions. The adsorption of the industrial dye waste (IDW) was a pH-, flow rate-, and bed thickness-controlled process by the regarded adsorbents. Kinetic studies confirmed the suitability of the Thomas equation over the Yoon and Nelson model in predicting the dynamic adsorption process of IDW by AC and AC/PA as was assured by the close agreement among the calculated and experimental uptake capacities of both adsorbents at the same applied flow rates, suggesting the chemisorption nature of IDW adsorption. Additionally, electrostatic attraction was the leading mechanism of IDW adsorption by AC and AC/PA composite with some advantages of the former over the latter.

3.
J Environ Manage ; 330: 117159, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586366

RESUMO

Various types of plutonic and volcanic rocks and their alteration products from Greece (serpentinite, magnesite and andesite), have been used for sustainable removal of Uranium (U) from the acidic drainage of Kirki mine, as well as for the pH increase of the polluted solutions. In this light, this study aims at the further understanding and improvement of the ecofriendly reuse of sterile, natural raw materials (including those remaining through industrial processing and engineering testing of aggregate rocks), for remediation of acid mine drainage. The selected rocks constitute such residues of sterile materials were used as filters in experimental continuous flow devices in the form of batch-type columns, in order to investigate acidic remediation properties with special focus on U removal. The initial pH of the wastewater was 2.90 and increased after seven (7) days of experimental application and more specifically from the fourth day onwards. Uranium removal became quantitatively significant once pH reached the value of 5.09. The volcanic rocks appeared to be more effective for U removal than the plutonic ones because of microtextural differences. However, optimum U removal was mainly achieved by serpentinite: while the raw materials rich in Mg strongly reacted and remediated the pH of the drainage water waste. Furthermore, the increase of pH values due to the presence of mineral raw materials, provided increased oxidation potential which deactivated the toxic load of metals, particularly U. Consequently, batch-type serpentinite reaction with the tailing fluid caused a drop in U concentration from an initial value of 254 ppb to the one of 8 ppb, which corresponds to 97% of removal. Andesite presented the second best reactant for experimental remediation, especially when it was mixed with magnetically separated mineral fractions. Despite the fact that the proposed methodology is currently at a relatively low Technology Readiness Level (TRL), it carries the potential to become an extremely effective and low-cost alternative to conventional environmental restoration technologies.


Assuntos
Urânio , Águas Residuárias , Silicatos de Magnésio , Minerais , Concentração de Íons de Hidrogênio
4.
Micron ; 161: 103333, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930967

RESUMO

In this paper the results of an experimental study on the behavior of aggregate shape on the compressive concrete strength was described. The main scope of that work is to answer whether there is a low-cost, low-energy methodology for predicting the behavior of an aggregate within a concrete and therefore its ultimate strength. This was achieved by using a combination of petrographic methods with GIS and MatLab software in a variety of lithologies when simultaneously producing a new micropetrographic index (Mshape) for the first time. For this reason, variable rocks such as sandstones, ultramafic, mafic and volcanic have been collected from Greece which are used as aggregates. Their petrographic characteristics as well as their geometrical properties were studied and hence their influence on concrete production. In the present study, a new micro-petrographic index is proposed based on the present proposed methodology which is able to act as a predictor of the aggregates shape and therefore of their behavior and suitability. Mshape index is strongly correlated with the geometrical indices of shape IE and IF as well as with the concrete strength.

5.
Micron ; 158: 103292, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512524

RESUMO

X-ray micro-computed tomography (µCT) was applied upon selected ophiolitic rock samples from various localities of the Vardar ophiolite outcrops in North Greece. Effectiveness of the µCT application was evaluated through this case study by comparing results with other state-of-the-art techniques (e.g., optical microscopy, mineral chemistry microanalyses, XRD and QEMSCAN) to provide suggestive methodologies for optimum characterization, geological modeling, and visualization of ophiolitic rocks. The research outcomes provide an innovative approach for accurate modal composition calculations, crystal structure and mineral distribution in a 3D perspective, by combining µCT results with mineral chemical analyses. The information obtained is critical for investigating ophiolitic rocks to resolve complex petrogenetic and post-magmatic phenomena, to identify fabrics related to deformation, and furthermore results can also be used for applied research purposes. The obtained µCT results suggest that distributions of mineral's grayscale values strongly rely on three key factors: (i) participation of mineral phases with distinct attenuation coefficient and/or density properties, (ii) coexistence of different mafic minerals or mafic with non-mafic phases, (iii) variability in their mineral chemistry. The ability to analyze and visualize the internal mineral constituents of ophiolitic rocks samples, through the combination of µCT and Energy-Dispersive X-ray spectroscopy (EDS), can lead to advanced 3D stereological rock fabric analyses, which is advantageous compared to 2D methodologies. The µCT allowed to perform rock fabric calculations (best-fit ellipsoids and with volume) upon specified grain size distributions to identify and characterize the 3D morphological properties of the participating crystals and their preferable orientation.


Assuntos
Microscopia , Minerais , Minerais/química , Espectrometria por Raios X , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...