Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124253, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603959

RESUMO

The paper presents a technique for measuring the concentration of 13CH4 in natural methane using Raman spectroscopy. The peak positions and the relative scattering cross-sections of the Q-branches for the most intense vibrational bands of 13CH4 are determined. Features of the 13CH4/12CH4 ratio measurement methods using Q-branches of the ν1 and ν3 bands were considered. It was shown that the 13CH4/12CH4 ratio can be determined by simulation of the ν3 bands of these molecules without the use of experimental spectra. In our experiments the measurement error of δ13C value was 10 ‰ using the 100-s exposure spectrum at a gas pressure close to 1 atm recorded on the developed Raman spectrometer. In addition, the Raman spectra of alkanes (up to n-hexane) in the range of 2850-3050 cm-1 at a resolution of 0.4 cm-1 are presented, and their integrated intensities in the ranges of the characteristic bands of 13CH4 and 12CH4 are provided. The data obtained make it possible to expand the capabilities of Raman gas analyzers in the mud gas logging industry.

2.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110599

RESUMO

Raman spectroscopy is a promising method for the analysis of natural gas. It is necessary to account for the broadening effects on spectral lines to improve measurement accuracy. In this study, the broadening coefficients for methane lines in the region of the ν2 band perturbed by propane, n-butane, and isobutane at room temperature were measured. We estimated the measurement errors of the concentration of oxygen and carbon dioxide in the case of neglecting the broadening effects on the methane spectrum by the pressure of C2-C6 alkanes. The obtained data are suited for the correct simulation of the methane spectrum in the hydrocarbon-bearing gases and can be used to improve the accuracy of the analysis of natural gas by Raman spectroscopy.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122396, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36696859

RESUMO

Different molecular environments change the spectrum of a given gas sample involved in a mixture compared to the spectrum of a pure gas. It is necessary to account for this effect to improve the accuracy of the analysis of the natural gas composition by Raman spectroscopy. First, the change in the main components of natural gas (methane, nitrogen, carbon dioxide, and ethane) must be considered. This work is devoted to the mutual influence of CH4-N2, CH4-CO2, and CH4-C2H6 on their characteristic Raman bands in the range of 300-2500 cm-1. The half-width and asymmetry of the Q branches of N2, CO2, and C2H6 as a function of methane concentration were obtained in the range of 1-50 bar. The averaged broadening coefficients of the rotational-vibrational lines of the ν2 band of CH4 perturbed by N2, CO2, and C2H6 are measured. A high-sensitivity spectrometer with a resolution of 0.5 cm-1 based on spontaneous Raman scattering was used to obtain reliable results. The algorithm and all the necessary parameters for simulating the effect of various molecular environments on the Raman bands of the main components of natural gas are presented.

4.
Sensors (Basel) ; 22(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591181

RESUMO

Raman spectroscopy is a promising method for analyzing natural gas due to its high measurement speed and the potential to monitor all molecular components simultaneously. This paper discusses the features of measurements of samples whose composition varies over a wide range (0.005-100%). Analysis of the concentrations obtained during three weeks of experiments showed that their variation is within the error caused by spectral noise. This result confirms that Raman gas analyzers can operate without frequent calibrations, unlike gas chromatographs. It was found that a variation in the gas composition can change the widths of the spectral lines of methane. As a result, the measurement error of oxygen concentration can reach 200 ppm. It is also shown that neglecting the measurement of pentanes and n-hexane leads to an increase in the calculated concentrations of other alkanes and to errors in the density and heating value of natural gas.

5.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011375

RESUMO

In this work, the effect of nitrogen and carbon dioxide on the depolarization ratio of the ν1 band of methane in the pressure range of 0.1-5 MPa is studied. A high-sensitivity single-pass Raman spectrometer was used to obtain accurate results. Moreover, we took into account the overlap of the ν1 band by the ν3 and ν2 + ν4 bands using the simulation of their spectra. The depolarization ratio of the ν1 band in pure methane is within 0-0.001, and the effect of nitrogen and carbon dioxide on this parameter is negligible in the indicated pressure range. The obtained results are useful for correct simulation of the Raman spectrum of methane at different pressures, which is necessary to improve the accuracy of gas analysis methods using Raman spectroscopy.

6.
Appl Spectrosc ; 75(1): 81-86, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32812448

RESUMO

Raman spectroscopy is a promising tool for combustion processes optimization, due to the possibility of rapid determination of the exhaust gases composition. An important gas component in this task is carbon monoxide whose emission limits vary from 100 to 200 parts per million (ppm), depending on the heat generator technology. However, for the correct determination of its concentration from the sample Raman spectrum, it is necessary to take into account the contribution of nitrogen lines intensity due to their mutual overlap. This paper discusses a technique for deriving carbon monoxide intensity based on fitting the nitrogen spectrum at various temperatures. It is shown that ignoring the Herman-Wallis factors in the fitting procedure lead to an additional measurement error, which increases with temperature and exceeds 350 ppm at T = 1800 K.

7.
Appl Opt ; 59(9): 2929-2934, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225843

RESUMO

This work is devoted to the investigation of the enhancement of Raman signals of nonadsorbed gases in the vicinity of corrugated metallic surfaces supporting propagating surface plasmon-polaritons (PSPPs). Simulation of the PSPP excitation efficiency on holographic gratings coated with silver films of various thicknesses at different groove heights was carried out. Verification showed good agreement between theory and experiment. Also, it was found that an increase of the PSPP excitation efficiency may not lead to an increase in the enhancement factor of Raman signals of gases located near the surface-enhanced Raman scattering active surface. For a holographic grating with a period of 667 nm, a groove height of 70 nm, and a silver film thickness of 30 nm coated with a protective ${{\rm Al}_2}{{\rm O}_3}$Al2O3 layer, the enhancement factor of Raman signals of nonadsorbed nitrogen molecules was $\sim{{\rm 4\cdot10}^3}$∼4⋅103.

8.
Appl Spectrosc ; 74(8): 948-953, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32186201

RESUMO

Raman spectroscopy is a unique tool for fast analysis of multicomponent gas media. In this work, we studied the features of application of this method for monitoring the syngas (mixture of CO + H2 + CH4 + CO2 + N2) composition. To determine concentrations, we used contour fit method, where the Raman spectrum of mixture is compared with a synthetically calculated spectrum. The effects of pressure changes and various exposure times on the accuracy of measurements are investigated. It was found that effect of pressure and environment on band contours results in measurement errors several times higher than the errors caused by deviations of the signal intensities.

9.
Opt Lett ; 42(22): 4728-4731, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140354

RESUMO

The Letter demonstrates a possibility to enhance the Raman scattering of a gaseous medium due to an enhanced electromagnetic field caused by the excitation of propagating surface plasmon polaritons (PSPPs) on a silver holographic grating. Efficiency of collinear and noncollinear schemes of PSPP excitation on a metal-gaseous medium interface was studied. When using a collinear scheme, we registered an eightfold enhancement of the Raman scattering of atmospheric nitrogen and oxygen, where the average gain near the PSPP-active surface was ∼4×103.

10.
Appl Opt ; 55(29): 8293-8295, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27828077

RESUMO

In the present work, efficiency of classical lens, mirror-lens, and pure mirror variants of the collection optics for a Raman spectrometer based on 90° geometry of scattered light collection is investigated. It is experimentally established that, despite a smaller collection angle, in the case of a relatively narrow input slit of the spectrometer (<100 µm), the lens optics with corrected off-axis and chromatic aberrations allows larger signal intensities to be registered. However, the low f/# mirror collection optics described in the work provide a more stable adjustment and can be used to increase the Raman signal intensities in cases when the image of the scattering volume formed by them is commensurable with the sizes of the input slit of the spectrometer.

11.
Appl Opt ; 55(33): 9521-9525, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27869865

RESUMO

In the present work, a multipass optical system intended for increasing the sensitivity of a Raman gas spectrometer based on the 90° geometry of scattered light collection is described. The system is characterized by an adjustment stability and an increased number of laser beams that pass through a small scattering volume, thus allowing the intensities of Raman signals from components of the gas medium in this volume to be increased. It is demonstrated that the application of this multipass optical system allows the sensitivity of the Raman gas spectrometer to be increased practically by 20 times (to several ppm for the 30-s registration time).

12.
Appl Spectrosc ; 70(10): 1770-1776, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279503

RESUMO

In the present work, an improved model of the Raman gas analyzer (RGA) of natural gas (NG) developed by us is described together with its operating principle. The sensitivity has been improved and the number of measurable gases has been expanded. Results of its approbation on a real NG sample are presented for different measurement times. A comparison of the data obtained with the results of chromatographic analysis demonstrates their good agreement. The time stability of the results obtained using this model is analyzed. It is experimentally established that the given RGA can reliably determine the content of all molecular NG components whose content exceeds 0.005% for 100 s; moreover, in this case the limiting sensitivity for some NG components is equal to 0.002%.

13.
Nanoscale Res Lett ; 7(1): 524, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23009051

RESUMO

We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 µm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 µm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 µm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of 'black silicon', which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...