Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Topogr ; 34(1): 56-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289858

RESUMO

First in vivo brain conductivity reconstructions using Helmholtz MR-Electrical Properties Tomography (MR-EPT) have been published. However, a large variation in the reconstructed conductivity values is reported and these values differ from ex vivo conductivity measurements. Given this lack of agreement, we performed an in vivo study on eight healthy subjects to provide reference in vivo brain conductivity values. MR-EPT reconstructions were performed at 3 T for eight healthy subjects. Mean conductivity and standard deviation values in the white matter, gray matter and cerebrospinal fluid (σWM, σGM, and σCSF) were computed for each subject before and after erosion of regions at tissue boundaries, which are affected by typical MR-EPT reconstruction errors. The obtained values were compared to the reported ex vivo literature values. To benchmark the accuracy of in vivo conductivity reconstructions, the same pipeline was applied to simulated data, which allow knowledge of ground truth conductivity. Provided sufficient boundary erosion, the in vivo σWM and σGM values obtained in this study agree for the first time with literature values measured ex vivo. This could not be verified for the CSF due to its limited spatial extension. Conductivity reconstructions from simulated data verified conductivity reconstructions from in vivo data and demonstrated the importance of discarding voxels at tissue boundaries. The presented σWM and σGM values can therefore be used for comparison in future studies employing different MR-EPT techniques.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Tomografia
2.
Neuromodulation ; 23(3): 324-334, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31353780

RESUMO

BACKGROUND: Rodent models are fundamental in unraveling cellular and molecular mechanisms of transcranial magnetic stimulation (TMS)-induced effects on the brain. However, proper translation of human TMS protocols to animal models have been restricted by the lack of rodent-specific focal TMS coils. OBJECTIVE: We aimed to improve TMS focalization in rodent brain with a novel small, cooled, and rodent-specific TMS coil. METHODS: A rodent-specific 25-mm figure-of-eight TMS coil was developed. Stimulation focalization was simulated in silico for the rodent coil and a commercial human 50-mm figure-of-eight TMS coil. Both coils were also compared in vivo by electromyography measurements of brachialis motor evoked potential (MEP) responses to TMS at different brain sites in anesthetized rats (n = 6). Focalization was determined from the coils' level of stimulation laterality. Differences in MEPs were statistically analyzed with repeated-measures, within-subjects, ANOVA. RESULTS: In silico simulation results deemed the human coil insufficient for unilateral stimulation of the rat motor cortex, whereas lateralized electrical field induction was projected attainable with the rodent coil. Cortical, in vivo MEP amplitude measurements from multiple points in each hemisphere, revealed unilateral activation of the contralateral brachialis muscle, in absence of ipsilateral brachialis activation, with both coils. CONCLUSION: Computer simulations motivated the design of a smaller rodent-specific TMS coil, but came short in explaining the capability of a larger commercial human coil to induce unilateral MEPs in vivo. Lateralized TMS, as demonstrated for both TMS coils, corroborates their use in translational rodent studies, to elucidate mechanisms of action of therapeutic TMS protocols.


Assuntos
Simulação por Computador , Desenho de Equipamento/métodos , Modelos Animais , Estimulação Magnética Transcraniana/instrumentação , Animais , Potencial Evocado Motor/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Hum Brain Mapp ; 39(11): 4580-4592, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30156743

RESUMO

Major depressive disorder (MDD) is a severe mental disorder associated with high morbidity and mortality rates, which remains difficult to treat, as both resistance and recurrence rates are high. Repetitive transcranial magnetic stimulation (TMS) of the left dorsolateral prefrontal cortex (DLPFC) provides a safe and effective treatment for selected patients with treatment-resistant MDD. Little is known about the mechanisms of action of TMS provided to the left DLPFC in MDD and we can currently not predict who will respond to this type of treatment, precluding effective patient selection. In order to shed some light on the mechanism of action, we applied single pulse TMS to the left DLPFC in 10 healthy participants using a unique TMS-fMRI set-up, in which we could record the direct effects of TMS. Stimulation of the DLPFC triggered activity in a number of connected brain regions, including the subgenual anterior cingulate cortex (sgACC) in four out of nine participants. The sgACC is of particular interest, because normalization of activity in this region has been associated with relief of depressive symptoms in MDD patients. This is the first direct evidence that TMS pulses delivered to the DLPFC can propagate to the sgACC. The propagation of TMS-induced activity from the DLPFC to sgACC may be an accurate biomarker for rTMS efficacy. Further research is required to determine whether this method can contribute to the selection of patients with treatment resistant MDD who will respond to rTMS treatment.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Adulto , Mapeamento Encefálico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/terapia , Feminino , Humanos , Masculino , Córtex Pré-Frontal/fisiopatologia , Adulto Jovem
4.
PLoS One ; 12(6): e0178952, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640923

RESUMO

BACKGROUND: Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. METHODS: We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. RESULTS: Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. CONCLUSION: TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Estimulação Magnética Transcraniana/instrumentação , Encéfalo/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Imageamento por Ressonância Magnética
5.
NMR Biomed ; 29(11): 1590-1600, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27669678

RESUMO

Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (BTMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping BTMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of BTMS were performed. MR-based measurements allow the mapping and quantification of BTMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by BTMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination.


Assuntos
Desenho Assistido por Computador , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Modelos Teóricos , Radiometria/métodos , Estimulação Magnética Transcraniana/instrumentação , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
6.
Magn Reson Med ; 76(3): 905-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26390255

RESUMO

PURPOSE: Knowledge on low frequency (LF) tissue conductivity is relevant for various biomedical purposes. To obtain this information, LF phase maps arising from time-varying imaging gradients have been demonstrated to create a LF conductivity contrast. Essential in this methodology is the subtraction of phase images acquired with opposite gradient polarities to separate LF and RF phase effects. Here we demonstrate how sensitive these subtractions are with respect to geometrical distortions. THEORY AND METHODS: The effect of geometrical distortions on LF phase maps is mathematically defined. After quantifying typical geometrical distortions, their effects on LF phase maps are evaluated using conductive phantoms. For validation, electromagnetic simulations of LF phase maps were performed. RESULTS: Even sub-voxel distortions of 10% of the voxel size, measured for a typical LF MR sequence, cause leakage of RF phase into LF phase of several milli-radians, leading to a misleading pattern of LF phase maps. This leakage is mathematically confirmed, while simulations indicate that the expected LF phase should be in order of micro-radians. CONCLUSION: The conductivity scaling of LF phase maps is attributable to the RF phase leakage, thus dependent on the RF conductivity. In fact, simulations show that the LF phase is not measurable. Magn Reson Med 76:905-912, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Artefatos , Condutividade Elétrica , Campos Eletromagnéticos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Radiometria/métodos , Animais , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Espalhamento de Radiação
7.
Tomography ; 2(3): 203-214, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30042964

RESUMO

Noninvasive quantification of subject-specific low-frequency brain tissue conductivity ( σLF ) will be valuable in different fields, for example, neuroscience. Magnetic resonance (MR)-electrical impedance tomography allows measurements of σLF . However, the required high level of direct current injection leads to an undesirable pain sensation. Following the same principles, but avoiding pain sensation, we evaluate the feasibility of inductively inducing currents using a transcranial magnetic stimulation (TMS) device and recording the magnetic field variations arising from the induced tissue eddy currents using a standard 3 T MR scanner. Using simulations, we characterize the strength of the incident TMS magnetic field arising from the current running in the TMS coil, the strength of the induced magnetic field arising from the induced currents in tissues by TMS pulses, and the MR phase accuracy required to measure this latter magnetic field containing information about σLF . Then, using TMS-MRI measurements, we evaluate the achievable phase accuracy for a typical TMS-MRI setup. From measurements and simulations, it is crucial to discriminate the incident from the induced magnetic field. The incident TMS magnetic field range is ±10-4 T, measurable with standard MR scanners. In contrast, the induced TMS magnetic field is much weaker (±10-8 T), leading to an MR phase contribution of ∼10-4 rad. This phase range is too small to be measured, as the phase accuracy for TMS-MRI experiments is ∼10-2 rads. Thus, although highly attractive, noninvasive measurements of the induced TMS magnetic field, and therefore estimations of σLF , are experimentally not feasible.

8.
Prog Brain Res ; 222: 229-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26541383

RESUMO

Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be.


Assuntos
Fenômenos Biofísicos/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Humanos , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...