Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4956, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002442

RESUMO

During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.


Assuntos
Mercúrio , Regiões Árticas , Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Isótopos de Mercúrio
2.
Nature ; 597(7878): 678-682, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588669

RESUMO

Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(II) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(II) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(II) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(II) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24-50%) atmospheric Hg(II) gross deposition and 58% (50-76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(II) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.

3.
Chemosphere ; 258: 127232, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32540539

RESUMO

Humans are exposed to methylmercury (MeHg), a bioaccumulative neurotoxin, mainly through the consumption of marine fish. Several studies showed that high MeHg exposure can lead to neurological damage. This is particularly relevant for pregnant women, because MeHg exposure negatively impacts foetal development. Populations living near the sea are generally at increased exposure risk due to higher consumption of fish and seafood. Here, we present the first study of MeHg exposure levels of the population living at the French Riviera, using mercury (Hg) concentrations in hair as a proxy for MeHg exposure. We found that older people that consume more fish presented the highest hair Hg concentrations. Compared to other Mediterranean bordering countries and other European countries, the southern France population is among those with high MeHg exposure (median for women of childbearing age is 0.56 µg g-1). A global implementation of the Minamata Convention is necessary to lower MeHg exposure of the population.


Assuntos
Exposição Dietética/análise , Contaminação de Alimentos/análise , Compostos de Metilmercúrio/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bioacumulação , Europa (Continente) , Feminino , Peixes/metabolismo , França , Cabelo/química , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Gravidez , Poluentes Químicos da Água/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(50): E11586-E11594, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478039

RESUMO

Midlatitude anthropogenic mercury (Hg) emissions and discharge reach the Arctic Ocean (AO) by atmospheric and oceanic transport. Recent studies suggest that Arctic river Hg inputs have been a potentially overlooked source of Hg to the AO. Observations on Hg in Eurasian rivers, which represent 80% of freshwater inputs to the AO, are quasi-inexistent, however, putting firm understanding of the Arctic Hg cycle on hold. Here, we present comprehensive seasonal observations on dissolved Hg (DHg) and particulate Hg (PHg) concentrations and fluxes for two large Eurasian rivers, the Yenisei and the Severnaya Dvina. We find large DHg and PHg fluxes during the spring flood, followed by a second pulse during the fall flood. We observe well-defined water vs. Hg runoff relationships for Eurasian and North American Hg fluxes to the AO and for Canadian Hg fluxes into the larger Hudson Bay area. Extrapolation to pan-Arctic rivers and watersheds gives a total Hg river flux to the AO of 44 ± 4 Mg per year (1σ), in agreement with the recent model-based estimates of 16 to 46 Mg per year and Hg/dissolved organic carbon (DOC) observation-based estimate of 50 Mg per year. The river Hg budget, together with recent observations on tundra Hg uptake and AO Hg dynamics, provide a consistent view of the Arctic Hg cycle in which continental ecosystems traffic anthropogenic Hg emissions to the AO via rivers, and the AO exports Hg to the atmosphere, to the Atlantic Ocean, and to AO marine sediments.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Ásia , Oceano Atlântico , Monitoramento Ambiental , Europa (Continente) , Inundações , Humanos , Modelos Teóricos , Rios/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...