Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(3): e0111620, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100635

RESUMO

Disease-suppressive soils protect plants against soilborne fungal pathogens that would otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the antagonistic activity of the microbial community associated with the plant roots. Considering the enormous taxonomic and functional diversity of the root-associated microbiome, identification of the microbial genera and mechanisms underlying this phenotype is challenging. One approach to unravel the underlying mechanisms is to identify metabolic pathways enriched in the disease-suppressive microbial community, in particular, pathways that harbor natural products with antifungal properties. An important class of these natural products includes peptides produced by nonribosomal peptide synthetases (NRPSs). Here, we applied functional amplicon sequencing of NRPS-associated adenylation domains (A domains) to a collection of eight soils that are suppressive or nonsuppressive (i.e., conducive) to Fusarium culmorum, a fungal root pathogen of wheat. To identify functional elements in the root-associated bacterial community, we developed an open-source pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster reconstruction through analyzing A domain co-occurrence across samples. We applied this pipeline to rhizosphere communities from four disease-suppressive and four conducive soils and found significant similarities in NRPS repertoires between suppressive soils. Specifically, several siderophore biosynthetic gene clusters were consistently associated with suppressive soils, hinting at competition for iron as a potential mechanism of suppression. Finally, to validate dom2BGC and to allow more unbiased functional metagenomics, we performed 10× metagenomic sequencing of one suppressive soil, leading to the identification of multiple gene clusters potentially associated with the disease-suppressive phenotype. IMPORTANCE Soil-borne plant-pathogenic fungi continue to be a major threat to agriculture and horticulture. The genus Fusarium in particular is one of the most devastating groups of soilborne fungal pathogens for a wide range of crops. Our approach to develop novel sustainable strategies to control this fungal root pathogen is to explore and exploit an effective, yet poorly understood naturally occurring protection, i.e., disease-suppressive soils. After screening 28 agricultural soils, we recently identified four soils that were suppressive to root disease of wheat caused by Fusarium culmorum. We also confirmed, via sterilization and transplantation, that the microbiomes of these soils play a significant role in the suppressive phenotype. By adopting nonribosomal peptide synthetase (NRPS) functional amplicon screening of suppressive and conducive soils, we here show how computationally driven comparative analysis of combined functional amplicon and metagenomic data can unravel putative mechanisms underlying microbiome-associated plant phenotypes.

2.
Proc Biol Sci ; 287(1921): 20192527, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32070256

RESUMO

In disease-suppressive soils, microbiota protect plants from root infections. Bacterial members of this microbiota have been shown to produce specific molecules that mediate this phenotype. To date, however, studies have focused on individual suppressive soils and the degree of natural variability of soil suppressiveness remains unclear. Here, we screened a large collection of field soils for suppressiveness to Fusarium culmorum using wheat (Triticum aestivum) as a model host plant. A high variation of disease suppressiveness was observed, with 14% showing a clear suppressive phenotype. The microbiological basis of suppressiveness to F. culmorum was confirmed by gamma sterilization and soil transplantation. Amplicon sequencing revealed diverse bacterial taxonomic compositions and no specific taxa were found exclusively enriched in all suppressive soils. Nonetheless, co-occurrence network analysis revealed that two suppressive soils shared an overrepresented bacterial guild dominated by various Acidobacteria. In addition, our study revealed that volatile emission may contribute to suppression, but not for all suppressive soils. Our study raises new questions regarding the possible mechanistic variability of disease-suppressive phenotypes across physico-chemically different soils. Accordingly, we anticipate that larger-scale soil profiling, along with functional studies, will enable a deeper understanding of disease-suppressive microbiomes.


Assuntos
Fusarium/fisiologia , Microbiologia do Solo , Triticum/microbiologia , Microbiota , Raízes de Plantas/microbiologia , Solo/química
3.
Appl Microbiol Biotechnol ; 103(21-22): 8875-8888, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31641814

RESUMO

Monoclonal antibodies (mABs) are of great biopharmaceutical importance for the diagnosis and treatment of diseases. However, their production in mammalian expression hosts usually requires extensive production times and is expensive. Escherichia coli has become a new platform for production of functional small antibody fragment variants. In this study, we have used a rhamnose-inducible expression system that allows precise control of protein expression levels. The system was first evaluated for the cytoplasmic production of super folder green fluorescence protein (sfGFP) in various production platforms and then for the periplasmic production of the anti-HIV single-chain variable antibody fragment (scFv) of PGT135. Anti-HIV broadly neutralizing antibodies, like PGT135, have potential for clinical use to prevent HIV transmission, to promote immune responses and to eradicate infected cells. Different concentrations of L-rhamnose resulted in the controlled production of both sfGFP and scFv PGT135 antibody. In addition, by optimizing the culture conditions, the amount of scFv PGT135 antibody that was expressed soluble or as inclusions bodies could be modulated. The proteins were produced in batch bioreactors, with yields of 4.9 g/L for sfGFP and 0.8 g/L for scFv. The functionality of the purified antibodies was demonstrated by their ability to neutralize a panel of different HIV variants in vitro. We expect that this expression system will prove very useful for the development of a more cost-effective production process for proteins and antibody fragments in microbial cells.


Assuntos
Anticorpos Monoclonais/biossíntese , Escherichia coli/metabolismo , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/terapia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Reatores Biológicos/microbiologia , Escherichia coli/genética , Expressão Gênica/genética , Anticorpos Anti-HIV/uso terapêutico , HIV-1/imunologia , Regiões Promotoras Genéticas/genética , Anticorpos de Cadeia Única/imunologia
4.
Open Biol ; 6(1): 150149, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26740586

RESUMO

The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Peroxidase/metabolismo , Streptomyces lividans/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cobre/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Immunoblotting , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Especificidade por Substrato
5.
Biochem J ; 469(3): 433-44, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26205496

RESUMO

Streptomyces lividans displays a distinct dependence on copper to fully initiate morphological development. Evidence has accumulated to implicate the participation of an extracytoplasmic cuproenzyme in morphogenesis. In the present study, we show that GlxA fulfils all criteria to be that cuproenzyme. GlxA is membrane associated and has an active site consisting of a mononuclear copper and a cross-linked Y-C cofactor. The domain organization of the tertiary structure defines GlxA as a new structural member of the mono-copper oxidase family, with copper co-ordination geometry similar to, but spectroscopically distinct from fungal galactose oxidase (Gox). EPR spectroscopy reveals that the oxidation of cupric GlxA generates a protein radical residing on the Y-C cross-link. A variety of canonical Gox substrates (including D-galactose) were tested but none were readily turned over by GlxA. A glxA null-mutant leads to loss of glycan accumulation at hyphal tips and consequently a drastically changed morphology both on solid substrates and in liquid-grown environments, a scenario similarly observed in the absence of the neighbouring glycan synthase CslA (cellulase synthase-like protein). In addition the glxA mutant has lost the stimulation of development by copper, supporting a model whereby the enzymatic action of GlxA on the glycan is required for development and morphology. From a biotechnology perspective, the open mycelium morphology observed with the glxA mutant in submerged culture has implications for use as an enzyme production host.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hifas/crescimento & desenvolvimento , Oxirredutases/química , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Streptomyces lividans/enzimologia , Proteínas de Bactérias/genética , Cobre/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/metabolismo , Modelos Moleculares , Morfogênese , Oxirredutases/genética , Streptomyces lividans/genética , Streptomyces lividans/crescimento & desenvolvimento , Streptomyces lividans/metabolismo
6.
Antonie Van Leeuwenhoek ; 106(1): 127-39, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682579

RESUMO

Cells that are part of a multicellular structure are typically embedded in an extracellular matrix, which is produced by the community members. These matrices, the composition of which is highly diverse between different species, are typically composed of large amounts of extracellular polymeric substances, including polysaccharides, proteins, and nucleic acids. The functions of all these matrices are diverse: they provide protection, mechanical stability, mediate adhesion to surfaces, regulate motility, and form a cohesive network in which cells are transiently immobilized. In this review we discuss the role of matrix components produced by streptomycetes during growth, development and attachment. Compared to other bacteria it appears that streptomycetes can form morphologically and functionally distinct matrices using a core set of building blocks.


Assuntos
Biopolímeros/metabolismo , Membrana Celular/metabolismo , Micélio/crescimento & desenvolvimento , Streptomyces/metabolismo , Aderência Bacteriana , Biofilmes , Membrana Celular/genética , Micélio/genética , Micélio/metabolismo , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
7.
J Vis Exp ; (84): e51178, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24561666

RESUMO

Streptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS). Detailed instructions are given for the use of the instrument and the basic statistical analysis of the data. We furthermore describe how pellets can be sorted according to user-defined settings, which enables downstream processing such as the analysis of the RNA or protein content. Using this methodology the mechanism underlying heterogeneous growth can be tackled. This will be instrumental for improving streptomycetes as a cell factory, considering the fact that productivity correlates with pellet size.


Assuntos
Citometria de Fluxo/métodos , Streptomyces coelicolor/citologia , Citometria de Fluxo/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Streptomyces coelicolor/crescimento & desenvolvimento
8.
Appl Microbiol Biotechnol ; 96(5): 1301-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23070651

RESUMO

Streptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets. One population consists of mycelia with a constant mean diameter of approximately 260 µm, whereas the other population contains larger mycelia whose diameter depends on the strain, the age of the culture, and medium composition. Quantitative proteomics analysis revealed that 37 proteins differed in abundance between the two populations of pellets. Stress-related proteins and biosynthetic proteins for production of the calcium-dependent antibiotic were more abundant in the population of large mycelia, while proteins involved in DNA topology, modification, or degradation were overrepresented in the population of small mycelia. Deletion of genes for the cellulose synthase-like protein CslA and the chaplins affected the average size of the population of large pellets but not that of small pellets. Considering the fact that the production of enzymes and metabolites depends on pellet size, these results provide new leads toward rational strain design of Streptomyces strains tailored for industrial fermentations.


Assuntos
Proteínas de Bactérias/análise , Citometria de Fluxo , Proteoma/análise , Streptomyces/química , Streptomyces/crescimento & desenvolvimento , Antibacterianos/biossíntese , Reatores Biológicos/microbiologia , Meios de Cultura/química , Deleção de Genes , Redes e Vias Metabólicas/genética , Proteômica , Streptomyces/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...