Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 37(1): 929-937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32757666

RESUMO

OBJECTIVE: The goal of this study is to better understand the immunogenetic expression and related cytotoxic responses of moderate but clinically relevant doses of hypofractionated radiation (1x15 Gy and 3x8 Gy) and magnetic nanoparticle hyperthermia (mNPH, CEM43 30). METHODS: Genetic, protein, immunopathology and tumor growth delay assessments were used to determine the immune and cytotoxic responses following radiation and mNPH alone and in combination. Although the thermal dose used, 43 C°/30 min (CEM43 30), typically results in modest independent cytotoxicity, it has shown the ability to stimulate an immune response and enhance other cancer treatments. The radiation doses studied (15 Gy and 3x8 Gy) are commonly used in preclinical research and are effective in selected stereotactic and palliative treatment settings, however they are not commonly used as first-line primary tumor treatment regimens. RESULTS: Our RNA-based genetic results suggest that while many of the cytotoxic and immune gene and protein pathways for radiation and hyperthermia are similar, radiation, at the doses used, results in a more consistent and expansive anti-cancer immune/cytotoxic expression profile. These results were supported by immunohistochemistry based cytotoxic T-cell tumor infiltration and tumor growth delay studies. When used together radiation and hyperthermia led to greater immune and cytotoxic activity than either modality alone. CONCLUSION: This study clearly shows that modest, but commonly used hypofractionated radiation and hyperthermia doses share many important immune and cytotoxic pathways and that combining the treatments, as compared to either treatment alone, results in genetic and biological anti-cancer benefits.


Assuntos
Antineoplásicos , Hipertermia Induzida , Terapia Combinada , Humanos , Hipertermia , Imunogenética
2.
Biomicrofluidics ; 14(3): 034115, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32642021

RESUMO

We report on a microsystem that couples high-throughput bacterial immunomagnetic capture to contact-free cell lysis using an alternating current magnetic field (AMF) to enable downstream molecular characterization of bacterial nucleic acids. Traditional methods for cell lysis rely on either dilutive chemical methods, expensive biological reagents, or imprecise physical methods. We present a microchip with a magnetic polymer substrate (Mag-Polymer microchip), which enables highly controlled, on-chip heating of biological targets following exposure to an AMF. First, we present a theoretical framework for the quantitation of power generation for single-domain magnetic nanoparticles embedded in a polymer matrix. Next, we demonstrate successful bacterial DNA recovery by coupling (1) high-throughput, sensitive microfluidic immunomagnetic capture of bacteria to (2) on-chip, contact-free bacterial lysis using an AMF. The bacterial capture efficiency exceeded 76% at 50 ml/h at cell loads as low as ∼10 CFU/ml, and intact DNA was successfully recovered at starting bacterial concentrations as low as ∼1000 CFU/ml. Using the presented methodology, cell lysis becomes non-dilutive, temperature is precisely controlled, and potential contamination risks are eliminated. This workflow and substrate modification could be easily integrated in a range of micro-scale diagnostic systems for infectious disease.

3.
J Vis Exp ; (161)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32716383

RESUMO

Hyperthermia has long been used in the treatment of cancer. Techniques have varied from the intra-tumoral insertion of hot iron rods, to systemically delivered tumor antibody-targeted magnetic nanoparticles, at temperatures from 39 ˚C (fever-level) to 1,000 ˚C (electrocautery) and treatment times from seconds to hours. The temperature-time relationship (thermal dose) dictates the effect with high thermal doses resulting in the tissue ablation and lower thermal doses resulting in sublethal effects such as increased blood flow, accumulation of drugs and immune stimulation. One of the most promising current medical therapies is magnetic nanoparticle hyperthermia  (mNPH). This technique involves activating magnetic nanoparticles, that can be delivered systemically or intratumorally, with a non-invasive, non-toxic alternating magnetic field. The size, construct and association of the magnetic nanoparticles and the frequency and field strength of the magnetic field are major heating determinants. We have developed sophisticated instrumentation and techniques for delivering reproducible magnetic nanoparticle hyperthermia in large and small animal models and cultured cells. This approach, using continuous, real time temperature monitoring in multiple locations, allows for the delivery of well-defined thermal doses to the target tissue (tumor) or cells while limiting non-target tissue heating. Precise control and monitoring of temperature, in multiple sites, and use of the industry standard algorithm (cumulative equivalent minutes at 43 ˚C /CEM43), allows for an accurate determination and quantification of thermal dose. Our system, which allows for a wide variety of temperatures, thermal doses, and biological effects, was developed through a combination of commercial acquisitions and inhouse engineering and biology developments. This system has been optimized in a manner that allows for the rapid conversion between ex vivo, in vitro, and in vivo techniques. The goal of this protocol is to demonstrate how to design, develop and implement an effective technique and system for delivering reproducible and accurate magnetic nanoparticle therapy (mNP) hyperthermia.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Febre/induzido quimicamente , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Humanos
4.
Int J Hyperthermia ; 36(sup1): 37-46, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795829

RESUMO

Objective: In this in vitro study we have used an RNA quantification technique, nanoString, and a conventional protein analysis technique (Western Blot) to assess the genetic and protein expression of B16 murine melanoma cells following a modest magnetic nanoparticle hyperthermia (mNPH) dose equivalent to 30 minutes @ 43°C (CEM43 30) and/or a clinically relevant 8 Gy radiation dose.Methods: Melanoma cells with mNPs(2.5 µg Fe/106 cells) were pelleted and exposed to an alternating magnetic field (AMF) to generate the targeted thermal dose. Thermal dose was accurately monitored by a fiber optic probe and automatically maintained at CEM43 30. All cells were harvested 24 hours after treatment.Results: The mNPH dose demonstrated notable elevations in the thermotolerance/immunogenic HSP70 gene and a number of chemoattractant and toll-like receptor gene pathways. The 8 Gy dose also upregulated a number of important immune and cytotoxic genetic and protein pathways. However, the mNPH/radiation combination was the most effective stimulator of a wide variety of immune and cytotoxic genes including HSP70, cancer regulating chemokines CXCL10, CXCL11, the T-cell trafficking chemokine CXCR3, innate immune activators TLR3, TLR4, the MDM2 and mTOR negative regulator of p53, the pro-apoptotic protein PUMA, and the cell death receptor Fas. Importantly a number of the genetic changes were accurately validated by protein expression changes, i.e., HSP70, p-mTOR, p-MDM2.Conclusion: These results not only show that low dose mNPH and radiation independently increase the expression of important immune and cytotoxic genes but that the effect is greatly enhanced when they are used in combination.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Melanoma/radioterapia , Animais , Humanos , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-29203951

RESUMO

It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 µg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.

6.
Int J Hyperthermia ; 32(7): 735-48, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27436449

RESUMO

BACKGROUND: Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. METHODS: This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. RESULTS: Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. CONCLUSION: Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Calefação , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...