Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 119, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347590

RESUMO

BACKGROUND: Breast cancer cells (BCCs) can remain undetected for decades in dormancy. These quiescent cells are similar to cancer stem cells (CSCs); hence their ability to initiate tertiary metastasis. Dormancy can be regulated by components of the tissue microenvironment such as bone marrow mesenchymal stem cells (MSCs) that release exosomes to dedifferentiate BCCs into CSCs. The exosomes cargo includes histone 3, lysine 4 (H3K4) methyltransferases - KMT2B and KMT2D. A less studied mechanism of CSC maintenance is the process of cell-autonomous regulation, leading us to examine the roles for KMT2B and KMT2D in sustaining CSCs, and their potential as drug targets. METHODS: Use of pharmacological inhibitor of H3K4 (WDR5-0103), knockdown (KD) of KMT2B or KMT2D in BCCs, real time PCR, western blot, response to chemotherapy, RNA-seq, and flow cytometry for circulating markers of CSCs and DNA hydroxylases in BC patients. In vivo studies using a dormancy model studied the effects of KMT2B/D to chemotherapy. RESULTS: H3K4 methyltransferases sustain cell autonomous regulation of CSCs, impart chemoresistance, maintain cycling quiescence, and reduce migration and proliferation of BCCs. In vivo studies validated KMT2's role in dormancy and identified these genes as potential drug targets. DNA methylase (DNMT), predicted within a network with KMT2 to regulate CSCs, was determined to sustain circulating CSC-like in the blood of patients. CONCLUSION: H3K4 methyltransferases and DNA methylation mediate cell autonomous regulation to sustain CSC. The findings provide crucial insights into epigenetic regulatory mechanisms underlying BC dormancy with KMT2B and KMT2D as potential therapeutic targets, along with standard care. Stem cell and epigenetic markers in circulating BCCs could monitor treatment response and this could be significant for long BC remission to partly address health disparity.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/patologia , Histonas/genética , Epigênese Genética , Metiltransferases/genética , DNA , Neoplasias/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Aging (Albany NY) ; 15(9): 3230-3248, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36996499

RESUMO

Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Feminino , Antígeno B7-H1/genética , Medula Óssea/patologia , Neoplasias da Mama/patologia
3.
Oncoscience ; 9: 42-48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110329

RESUMO

Breast cancer (BC) metastasis can occur decades before clinical diagnosis. During this time, the cancer cells (BCCs) can remain dormant for decades. This type of dormancy also occurs during remission where the dormant BCCs adapt cycling quiescence within the tissue microenvironment. BC shows preference for the bone marrow (BM), resulting in poor prognosis. The BM provides a challenge due to the complex niche between the peripheral interface and endosteum. The process of dormancy begins upon entry into the marrow with the changes facilitated through crosstalk between the cancer cells and tissue niche. More importantly, dormancy can occur at any time during the disease process, including the time during treatment. This perspective discusses the challenges posed by the marrow microenvironment to develop treatment. The article discusses the complex mechanisms at each compartment within the marrow niche and the added negative issue of toxicity to the endogenous stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...