Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurochem Res ; 42(2): 552-562, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27885575

RESUMO

Neonatal hypoxia-ischemia (HI) is an etiologic component of several neurologic pathologies associated to cognitive impairment. The mechanisms involved in HI-induced tissue damage start immediately after HI and extend for days. Acetylcholine is an important neurotransmitter in the central nervous system and exerts a protector effect on tissue damage by modulating inflammation, and cholinesterase inhibitors have shown neuroprotective properties and their action are often attributed to inhibition of the immune response. The administration of Huperzia quadrifariata alkaloid extract (HqAE), with potent and selective cholinesterase inhibitor properties, will reduce the HI induced behavioral deficits and tissue damage. A total of 84 newborn Wistar rat pups at post natal day 7 (PND7) were subjected to right carotid occlusion followed by 1 h of hypoxia (8% of O2) and i.p. injections of saline, vehicle or HqAE (10 mg/kg). Morris Water Maze and inhibitory avoidance tests were used to assess the cognitive function. Flow cytometry was performed at PND11. Histological analysis was performed at PND45. HqAE treatment was able to prevent the HI induced cognitive deficits in both tests and, at PND45, histological analysis showed that HqAE treatment reduced hippocampus tissue damage. Flow cytometry of the injured hippocampus revealed that the treatment was able to reduce cellular death and the number of infiltrating T cells. Altogether, these results show the therapeutic potential of the Huperzia quadrifariata alkaloid extract to prevent cognitive deficits and histological damage caused by neonatal hypoxia-ischemia, probably by reducing cellular death and T cell mobilization.


Assuntos
Alcaloides/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Huperzia , Hipóxia-Isquemia Encefálica/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Animais Recém-Nascidos , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/prevenção & controle , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Componentes Aéreos da Planta , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Resultado do Tratamento
2.
Appetite ; 87: 168-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25543075

RESUMO

The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.


Assuntos
Aspartame/efeitos adversos , Comportamento Alimentar , Adoçantes não Calóricos/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Masculino , Modelos Animais , Gravidez , Ratos , Ratos Wistar , Triglicerídeos/sangue , Aumento de Peso
3.
Neuroscience ; 246: 28-39, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639877

RESUMO

Physical exercise during pregnancy has been considered beneficial to mother and child. Recent studies showed that maternal swimming improves memory in the offspring, increases hippocampal neurogenesis and levels of neurotrophic factors. The objective of this work was to investigate the effect of maternal swimming during pregnancy on redox status and mitochondrial parameters in brain structures from the offspring. Adult female Wistar rats were submitted to five swimming sessions (30 min/day) prior to mating with adult male Wistar rats, and then trained during the pregnancy (five sessions of 30-min swimming/week). The litter was sacrificed when 7 days old, when cerebellum, parietal cortex, hippocampus, and striatum were dissected. We evaluated the production of reactive species and antioxidant status, measuring the activities of superoxide-dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx), as well as non-enzymatic antioxidants. We also investigated a potential mitochondrial biogenesis regarding mitochondrion mass and membrane potential, through cytometric approaches. Our results showed that maternal swimming exercise promoted an increase in reactive species levels in cerebellum, parietal cortex, and hippocampus, demonstrated by an increase in dichlorofluorescein oxidation. Mitochondrial superoxide was reduced in cerebellum and parietal cortex, while nitrite levels were increased in cerebellum, parietal cortex, hippocampus, and striatum. Antioxidant status was improved in cerebellum, parietal cortex, and hippocampus. SOD activity was increased in parietal cortex, and was not altered in the remaining brain structures. CAT and GPx activities, as well as non-enzymatic antioxidant potential, were increased in cerebellum, parietal cortex, and hippocampus of rats whose mothers were exercised. Finally, we observed an increased mitochondrial mass and membrane potential, suggesting mitochondriogenesis, in cerebellum and parietal cortex of pups subjected to maternal swimming. In conclusion, maternal swimming exercise induced neurometabolic programing in the offspring that could be of benefit to the rats against future cerebral insults.


Assuntos
Antioxidantes/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Natação/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Biogênese de Organelas , Gravidez , Ratos , Ratos Wistar
4.
Free Radic Res ; 47(3): 233-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23297832

RESUMO

Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.


Assuntos
Injúria Renal Aguda/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Córtex Cerebral/metabolismo , Rim/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Animais , Catalase/metabolismo , Creatinina/sangue , Gentamicinas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Ácido Metilmalônico , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução , Carbonilação Proteica , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
Neurochem Res ; 38(2): 262-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23132740

RESUMO

Social isolation is one of the most potent stressors in the prepubertal period and may influence disease susceptibility or resilience in adulthood. The glucocorticoid response and, consequently, the adaptive response to stress involve important changes in mitochondrial functions and apoptotic signaling. Previous studies have shown that consumption of a palatable diet reduces some stress effects. Therefore, the aim of the present study was to investigate whether isolation stress in early life can lead to cellular alterations in the hippocampus. For this, we evaluated oxidative stress parameters, DNA breakage index, mitochondrial mass and potential, respiratory chain enzyme activities, apoptosis, and necrosis in the hippocampus of juvenile male rats submitted or not to isolation stress during the pre-puberty period. We also verified whether consumption of a palatable diet during this period can modify stress effects. Results show that stress led to an oxidative imbalance, DNA breaks, increased the mitochondrial potential and early apoptosis, and decreased the number of live and necrotic cells. In addition, the palatable diet increased glutathione peroxidase activity, high mitochondrial potential and complex I-III activity in the hippocampus of juvenile rats. The administration of a palatable diet during the isolation period prevented the stress effects that caused the reduction in live cells and increased apoptosis. In conclusion, the stress experienced during the pre-pubertal period induced a hippocampal oxidative imbalance, DNA damage, mitochondrial dysfunction, and increased apoptosis, while consumption of a palatable diet attenuated some of these effects of exposure, such as the reduction in live cells and increased apoptosis, besides favoring an increase in antioxidant enzymes activities.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Carboidratos da Dieta/administração & dosagem , Hipocampo/metabolismo , Isolamento Social/psicologia , Estresse Psicológico/psicologia , Ração Animal , Animais , Apoptose/genética , Dano ao DNA/fisiologia , Hipocampo/patologia , Masculino , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Estresse Psicológico/dietoterapia , Estresse Psicológico/patologia
6.
Neurochem Res ; 37(5): 1063-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22327943

RESUMO

Social isolation during postnatal development leads to behavioral and neurochemical changes, and a particular susceptibility of the prefrontal cortex to interventions during this period has been suggested. In addition, some studies showed that consumption of a palatable diet reduces some of the stress effects. Therefore, our aim is to investigate the effect of isolation stress in early life on some parameters of oxidative stress and energy metabolism (Na(+),K(+)-ATPase activity, respiratory chain enzymes activities and mitochondrial mass and potential) in prefrontal cortex of juvenile and adult male rats. We also verified if the consumption of a palatable diet during the prepubertal period would reduce stress effects. The results showed that, in juvenile animals, isolation stress increased superoxide dismutase and Complex IV activities and these effects were still observed in the adulthood. An interaction between stress and diet was observed in catalase activity in juveniles, while only the stress effect was detected in adults, reducing catalase activity. Access to a palatable diet increased Na(+),K(+)-ATPase activity in juveniles, an effect that was reversed after removing this diet. On the other hand, isolation stress induced a decreased activity of this enzyme in adulthood. No effects were observed on glutathione peroxidase, total thiols and free radicals production, as well as on mitochondrial mass and potential. In conclusion, isolation stress in the prepubertal period leads to long-lasting changes on antioxidant enzymes and energetic metabolism in the prefrontal cortex of male rats, and a palatable diet was not able to reverse these stress-induced effects.


Assuntos
Córtex Pré-Frontal/metabolismo , Isolamento Social , Estresse Psicológico , Animais , Catalase/metabolismo , Transporte de Elétrons , Glutationa Peroxidase/metabolismo , Masculino , Potenciais da Membrana , Mitocôndrias/metabolismo , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Cytokine ; 56(3): 600-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21930390

RESUMO

Gangliosides have been extensively described to be involved in the proliferation and differentiation of various cell types, such including hematopoietic cells. Our previous studies on murine models of stroma-mediated myelopoiesis have shown that gangliosides are required for optimal capacity of stromal cells to support proliferation of myeloid precursor cells, being shed to the supernatant and selectively incorporated into myeloid cell membranes. Here we describe the effect of gangliosides on the specific granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation. For that, we used the monocytic FDC-P1 cell line, which is dependent upon GM-CSF for survival and proliferation. Cells were cultured in the presence of GM-CSF and exogenous gangliosides (GM3, GD1a or GM1) or in the absence of endogenous ganglioside synthesis by the use of a ceramide-synthase inhibitor, D-PDMP. We observed that exogenous addition of GD1a enhanced the GM-CSF-induced proliferation of the FDC-P1 cells. Also, we detected an increase in the expression of the α isoform of the GM-CSF receptor (GMRα) as well as of the transcription factor C/EBPα. On the contrary, inhibition of glucosylceramide synthesis was accompanied by a decrease in cell proliferation, which was restored upon the addition of exogenous GD1a. We also show a co-localization of GD1a and GMR by immunocytochemistry. Taken together, our results suggest for the first time that ganglioside GD1a play a role on the modulation of GM-CSF-mediated proliferative response, which might be of great interest not only in hematopoiesis, but also in other immunological processes, Alzheimer disease, alveolar proteinosis and wherever GM-CSF exerts its effects.


Assuntos
Gangliosídeos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Densitometria , Imunofluorescência , Gangliosídeo G(M3)/farmacologia , Gangliosídeos/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Microscopia Confocal , Morfolinas/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Solubilidade/efeitos dos fármacos
8.
Neurochem Int ; 45(5): 661-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15234108

RESUMO

Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as methylmalonic acidemia (MMAemia). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are not totally established. In the present study, we investigated the effect of MMA, as well as propionic (PA) and tiglic (TA) acids, whose concentrations are also increased but to a lesser extend in MMAemia, on total (tCK), cytosolic (Cy-CK) and mitochondrial (Mi-CK) creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas Cy-CK and Mi-CK were determined, respectively, in cytosolic and mitochondrial preparations from rat cerebral cortex. We verified that tCK and Mi-CK activities were significantly inhibited by MMA at concentrations as low as 1 mM, in contrast to Cy-CK which was not affected by the presence of the acid in the incubation medium. Furthermore, PA and TA, at concentrations as high as 5 mM, did not alter CK activity. We also observed that the inhibitions provoked by MMA were fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of MMA was possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of MMA may contribute to the neurodegeneration of patients affected by MMAemia and explain previous reports showing an impairment of brain energy metabolism and a reduction of brain phosphocreatine levels caused by MMA.


Assuntos
Córtex Cerebral/enzimologia , Creatina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácido Metilmalônico/farmacologia , Mitocôndrias/enzimologia , Animais , Antioxidantes/farmacologia , Córtex Cerebral/efeitos dos fármacos , Crotonatos/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Hemiterpenos , Técnicas In Vitro , Indicadores e Reagentes , Masculino , Mitocôndrias/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I , Propionatos/farmacologia , Ratos
9.
Braz J Med Biol Res ; 34(2): 227-31, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11175498

RESUMO

Levels of methylmalonic acid (MMA) comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l) and brain (1.35 umol/g) of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 umol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum") was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA)) in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children.


Assuntos
Química Encefálica , Gangliosídeos/metabolismo , Metabolismo dos Lipídeos , Ácido Metilmalônico/administração & dosagem , Bainha de Mielina/efeitos dos fármacos , Ácidos Siálicos/metabolismo , Animais , Animais Recém-Nascidos , Colesterol/metabolismo , Feminino , Ácido Metilmalônico/farmacologia , Fosfolipídeos/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
10.
Braz. j. med. biol. res ; 34(2): 227-231, Feb. 2001.
Artigo em Inglês | LILACS | ID: lil-281600

RESUMO

Levels of methylmalonic acid (MMA) comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l) and brain (1.35 æmol/g) of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 æmol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum") was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA)) in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children


Assuntos
Encéfalo , Lipídeos , Ácido Metilmalônico/administração & dosagem , Proteínas da Mielina , Bainha de Mielina , Ácido N-Acetilneuramínico , Animais Recém-Nascidos , Colesterol , Gangliosídeos , Ácido Metilmalônico/farmacologia , Fosfolipídeos/análise , Ratos Wistar , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...