Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6607): 742-747, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862490

RESUMO

We experimentally discovered and theoretically analyzed a photochemical mechanism, which we term proton-coupled energy transfer (PCEnT). A series of anthracene-phenol-pyridine triads formed a local excited anthracene state after light excitation at a wavelength of ~400 nanometers (nm), which led to fluorescence around 550 nm from the phenol-pyridine unit. Direct excitation of phenol-pyridine would have required ~330-nm light, but the coupled proton transfer within the phenol-pyridine unit lowered its excited-state energy so that it could accept excitation energy from anthracene. Singlet-singlet energy transfer thus occurred despite the lack of spectral overlap between the anthracene fluorescence and the phenol-pyridine absorption. Moreover, theoretical calculations indicated negligible charge transfer between the anthracene and phenol-pyridine units. We construe PCEnT as an elementary reaction of possible relevance to biological systems and future photonic devices.

2.
Science ; 364(6439): 471-475, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30975771

RESUMO

Electron transfer reactions slow down when they become very thermodynamically favorable, a counterintuitive interplay of kinetics and thermodynamics termed the inverted region in Marcus theory. Here we report inverted region behavior for proton-coupled electron transfer (PCET). Photochemical studies of anthracene-phenol-pyridine triads give rate constants for PCET charge recombination that are slower for the more thermodynamically favorable reactions. Photoexcitation forms an anthracene excited state that undergoes PCET to create a charge-separated state. The rate constants for return charge recombination show an inverted dependence on the driving force upon changing pyridine substituents and the solvent. Calculations using vibronically nonadiabatic PCET theory yield rate constants for simultaneous tunneling of the electron and proton that account for the results.

3.
Chem Sci ; 9(41): 7958-7967, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30430000

RESUMO

Interligand electron transfer (ILET) of the lowest metal-to-ligand charge transfer (MLCT) state of N712 (cis-[Ru(dcb)2(NCS)2]4-, where dcb = 4,4'-dicarboxylate-2,2'-bipyridine) in a deuterated acetonitrile solution has been studied by means of femtosecond transient absorption anisotropy in the mid-IR. Time-independent B3LYP density functional calculations were performed to assign vibrational bands and determine their respective transition dipole moments. The transient absorption spectral band at 1327 cm-1, assigned to a symmetric carboxylate stretch, showed significant anisotropy. A rapid anisotropy increase (τ 1 ≈ 2 ps) was tentatively assigned to vibrational and solvent relaxation, considering the excess energy available after the excited singlet-triplet conversion. Thereafter, the anisotropy decayed to zero with a time constant τ 2 ≈ 240 ps, which was assigned to the rotational correlation time of the complex in deuterated acetonitrile. No other distinctive changes to the anisotropy were observed and the amplitude of the slow component at time zero agrees well with that predicted for a random mixture of MLCT localization on either of the two dcb ligands. The results therefore suggest that MLCT randomization over the two dcb ligands occurs on the sub-ps time scale. This is much faster than proposed by previous reports on the related N3 complex [Benkö et al., J. Phys. Chem. B, 2004, 108, 2862, and Waterland et al., J. Phys. Chem. A, 2001, 105, 4019], but in agreement with that found by Wallin and co-workers [J. Phys. Chem. A, 2005, 109, 4697] for the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) complex. This suggests that electron injection from the excited dye into TiO2 in dye-sensitized solar cells is not limited by ILET.

4.
J Phys Chem Lett ; 6(5): 779-83, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26262652

RESUMO

Mesoporous nickel oxide has been used as electrode material for p-type dye-sensitized solar cells (DSCs) for many years but no high efficiency cells have yet been obtained. One of the main issues that lowers the efficiency is the poor fill factor, for which a clear reason is still missing. In this paper we present the first evidence for a relation between applied potential and the charge recombination rate of the NiO electrode. In particular, we find biphasic recombination kinetics: a fast (15 ns) pathway attributed to the reaction with the holes in the valence band and a slow (1 ms) pathway assigned to the holes in the trap states. The fast component is the most relevant at positive potentials, while the slow component becomes more important at negative potentials. This means that at the working condition of the cell, the fast recombination is the most important. This could explain the low fill factor of NiO-based DSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...