Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 276(1654): 63-9, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18765345

RESUMO

A fundamental goal of conservation science is to improve conservation practice. Understanding species extinction patterns has been a central approach towards this objective. However, uncertainty remains about the extent to which species-level patterns reliably indicate population phenomena at the scale of local sites, where conservation ultimately takes place. Here, we explore the importance of both species- and site-specific components of variation in local population declines following habitat disturbance, and test a suite of hypotheses about their intrinsic and extrinsic drivers. To achieve these goals, we analyse an unusually detailed global dataset for species responses to habitat disturbance, namely primates in timber extraction systems, using cross-classified generalized linear mixed models. We show that while there are consistent differences in the severity of local population decline between species, an equal amount of variation also occurs between sites. The tests of our hypotheses further indicate that a combination of biological traits at the species level, and environmental factors at the site level, can help to explain these patterns. Specifically, primate populations show a more marked decline when the species is characterized by slow reproduction, high ecological requirements, low ecological flexibility and small body size; and when the local environment has had less time for recovery following disturbance. Our results demonstrate that individual species show a highly heterogeneous, yet explicable, pattern of decline. The increased recognition and elucidation of local-scale processes in species declines will improve our ability to conserve biodiversity in the future.


Assuntos
Meio Ambiente , Extinção Biológica , Primatas/fisiologia , Animais , Conservação dos Recursos Naturais , Agricultura Florestal , Modelos Lineares , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
2.
BMC Evol Biol ; 8: 51, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18282297

RESUMO

BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.


Assuntos
Comportamento Alimentar , Cadeia Alimentar , Modelos Biológicos , Predomínio Social , Animais
3.
Biol Rev Camb Philos Soc ; 81(4): 501-29, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16863594

RESUMO

As field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.e. excluding time spent on digestive pauses and other activities, such as preening. The present and previous studies show that the general shape of the functional response in shorebirds eating approximately the same size of prey across the full range of prey density is a decelerating rise to a plateau, thus approximating the Holling type II ('disc equation') formulation. But field studies confirmed that the asymptote was not set by handling time, as assumed by the disc equation, because only about half the foraging time was spent in successfully or unsuccessfully attacking and handling prey, the rest being devoted to searching.A review of 30 functional responses showed that intake rate in free-living shorebirds varied independently of prey density over a wide range, with the asymptote being reached at very low prey densities (<150/m-2). Accordingly, most of the many studies of shorebird intake rate have probably been conducted at or near the asymptote of the functional response, suggesting that equations that predict intake rate should also predict the asymptote.A multivariate analysis of 468 'spot' estimates of intake rates from 26 shorebirds identified ten variables, representing prey and shorebird characteristics, that accounted for 81% of the variance in logarithm-transformed intake rate. But four-variables accounted for almost as much (77.3%), these being bird size, prey size, whether the bird was an oystercatcher Haematopus ostralegus eating mussels Mytilus edulis, or breeding. The four variable equation under-predicted, on average, the observed 30 estimates of the asymptote by 11.6%, but this discrepancy was reduced to 0.2% when two suspect estimates from one early study in the 1960s were removed. The equation therefore predicted the observed asymptote very successfully in 93% of cases. We conclude that the asymptote can be reliably predicted from just four easily measured variables. Indeed, if the birds are not breeding and are not oystercatchers eating mussels, reliable predictions can be obtained using just two variables, bird and prey sizes. A multivariate analysis of 23 estimates of the half-asymptote constant suggested they were smaller when prey were small but greater when the birds were large, especially in oystercatchers. The resulting equation could be used to predict the half-asymptote constant, but its predictive power has yet to be tested. As well as predicting the asymptote of the functional response, the equations will enable research workers engaged in many areas of shorebird ecology and behaviour to estimate intake rate without the need for conventional time-consuming field studies, including species for which it has not yet proved possible to measure intake rate in the field.


Assuntos
Charadriiformes/fisiologia , Ingestão de Alimentos , Comportamento Alimentar , Invertebrados/crescimento & desenvolvimento , Animais , Charadriiformes/anatomia & histologia , Invertebrados/anatomia & histologia , Análise Multivariada , Densidade Demográfica , Dinâmica Populacional , Valor Preditivo dos Testes , Fatores de Tempo
4.
Proc Biol Sci ; 271(1557): 2613-20, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15615688

RESUMO

Many animals gain benefits from living in groups, such as a dilution in predation risk when they are closely aggregated (referred to as the 'selfish herd'). Game theory has been used to predict many properties of groups (such as the expected group size), but little is known about the proximate mechanisms by which animals achieve these predicted properties. We explore a possible proximate mechanism using a spatially explicit, individual-based model, where individuals can choose to rest or forage on the basis of a rule-of-thumb that is dependent upon both their energetic reserves and the presence and actions of neighbours. The resulting behaviour and energetic reserves of individuals, and the resulting group sizes, are shown to be affected both by the ability of the forager to detect conspecifics and areas of the environment suitable for foraging, and by the distribution of energy in the environment. The model also demonstrates that if animals are able to choose (based upon their energetic reserves) between selecting the best foraging sites available and moving towards their neighbours for safety, then this also has significant effects upon individuals and group sizes. The implications of the proposed rule-of-thumb are discussed.


Assuntos
Comportamento Cooperativo , Comportamento Alimentar/fisiologia , Modelos Biológicos , Comportamento Social , Animais , Simulação por Computador
5.
Nature ; 423(6938): 432-4, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12761547

RESUMO

Animals that forage socially often stand to gain from coordination of their behaviour. Yet it is not known how group members reach a consensus on the timing of foraging bouts. Here we demonstrate a simple process by which this may occur. We develop a state-dependent, dynamic game model of foraging by a pair of animals, in which each individual chooses between resting or foraging during a series of consecutive periods, so as to maximize its own individual chances of survival. We find that, if there is an advantage to foraging together, the equilibrium behaviour of both individuals becomes highly synchronized. As a result of this synchronization, differences in the energetic reserves of the two players spontaneously develop, leading them to adopt different behavioural roles. The individual with lower reserves emerges as the 'pace-maker' who determines when the pair should forage, providing a straightforward resolution to the problem of group coordination. Moreover, the strategy that gives rise to this behaviour can be implemented by a simple 'rule of thumb' that requires no detailed knowledge of the state of other individuals.


Assuntos
Metabolismo Energético , Cadeia Alimentar , Modelos Biológicos , Comportamento Social , Animais , Alimentos , Atividade Motora , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...