Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 12(1): 13-20, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17166827

RESUMO

Breast tumors are typically heterogeneous and contain diverse subpopulations of tumor cells with differing phenotypic properties. Planar cultures of cancer cell lines are not viable models of investigation of cell-cell and cell-matrix interactions during tumor development. This article presents an in vitro coculture-based 3-dimensional heterogeneous breast tumor model that can be used in drug resistance and drug delivery investigations. Breast cancer cell lines of different phenotypes (MDAMB231, MCF7, and ZR751) were cocultured in a rotating wall vessel bioreactor to form a large number of heterogeneous tumoroids in a single cell culture experiment. Cells in the rotating vessels were labeled with Cell Tracker fluorescent probes to allow for time course fluorescence microscopy to monitor cell aggregation. Histological sections of tumoroids were stained with hematoxylin and eosin, progesterone receptor, E-cadherin (E-cad), and proliferation marker ki67. In vitro tumoroids developed in this study recapture important features of the temporal-spatial organization of solid tumors, including the presence of necrotic areas at the center and higher levels of cell division at the tumor periphery. E-cad-positive MCF7 cells form larger tumoroids than E-cad-negative MDAMB231 cells. In heterogeneous tumors, the irregular surface roughness was mainly due to the presence of MDAMB231 cells, whereas MCF7 cells formed smooth surfaces. Moreover, when heterogeneous tumoroids were placed onto collagen gels, highly invasive MDAMB231 cell-rich surface regions produced extensions into the matrix, whereas poorly invasive MCF7 cells did not. The fact that one can form a large number of 1-mm tumoroids in 1 coculture attests to the potential use of this system at high-throughput investigations of cancer drug development and drug delivery into the tumor.


Assuntos
Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos/métodos , Caderinas/imunologia , Agregação Celular , Linhagem Celular Tumoral , Tamanho Celular , Técnicas de Cocultura , Humanos , Antígeno Ki-67/imunologia , Receptores de Progesterona/imunologia , Fatores de Tempo
2.
J Theor Biol ; 233(1): 43-54, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15615618

RESUMO

This study presents a stochastic model that correlates genomic instability with tumor formation. The model describes the time- and space-variant volumetric concentrations of cancer cells of various phenotypes in a breast tumor. The cells of epithelial origin in the cancerous breast tissue are classified into four different phenotypes, normal epithelial cells and the grade 1, grade 2 and grade 3 cancer cell types with increasing potential for growth and invasion. Equations governing the time course of volumetric concentrations of cell phenotypes are derived by using the principle of conservation of mass. Cell migration into and from the stroma is taken into account. The transformations between cell phenotypes are due to genetic inheritance and chromosome aberrations. These transformations are assumed to be stochastic functions of the local cell concentration. The simulations of the model for planar geometry replicate the shapes of human breast tumors and capture the time history of tumor growth in animal models. Simulations point to transformation of tumor cell population from heterogeneous compositions to a single phenotype at advanced stages of invasive tumors. Systematic variations of model parameters in the computations indicate the important roles the migration capacity, proliferation rate, and phenotype transition probability play in tumor growth. The model developed provides realistic simulations for standard breast cancer therapies and can be used in the optimization studies of chemotherapy, radiotherapy, hormone therapy and emerging individualized therapies for cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Simulação por Computador , Células Epiteliais/patologia , Instabilidade Genômica , Modelos Genéticos , Animais , Neoplasias da Mama/terapia , Divisão Celular , Feminino , Humanos , Modelos Animais , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...