Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 14(4): e202000457, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345429

RESUMO

Transparency is widespread in nature, ranging from transparent insect wings to ocular tissues that enable you to read this text, and transparent marine vertebrates. And yet, cells and tissue models in biology are usually strongly light scattering and optically opaque, precluding deep optical microscopy. Here we describe the directed evolution of cultured mammalian cells toward increased transparency. We find that mutations greatly diversify the optical phenotype of Chinese Hamster Ovary cells, a cultured mammalian cell line. Furthermore, only three rounds of high-throughput optical selection and competitive growth are required to yield fit cells with greatly improved transparency. Based on 15 monoclonal cell lines derived from this directed evolution experiment, we find that the evolved transparency frequently goes along with a reduction of nuclear granularity and physiological shifts in gene expression profiles. In the future this optical plasticity of mammalian cells may facilitate genetic clearance of living tissues for in vivo microscopy.


Assuntos
Microscopia , Animais , Células CHO , Cricetinae , Cricetulus
2.
Elife ; 82019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31825309

RESUMO

Rod photoreceptors of nocturnal mammals display a striking inversion of nuclear architecture, which has been proposed as an evolutionary adaptation to dark environments. However, the nature of visual benefits and the underlying mechanisms remains unclear. It is widely assumed that improvements in nocturnal vision would depend on maximization of photon capture at the expense of image detail. Here, we show that retinal optical quality improves 2-fold during terminal development, and that this enhancement is caused by nuclear inversion. We further demonstrate that improved retinal contrast transmission, rather than photon-budget or resolution, enhances scotopic contrast sensitivity by 18-27%, and improves motion detection capabilities up to 10-fold in dim environments. Our findings therefore add functional significance to a prominent exception of nuclear organization and establish retinal contrast transmission as a decisive determinant of mammalian visual perception.


Assuntos
Núcleo Celular/ultraestrutura , Sensibilidades de Contraste/fisiologia , Percepção de Movimento/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Animais , Simulação por Computador , Feminino , Genes Reporter , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Bipolares da Retina/fisiologia , Células Bipolares da Retina/ultraestrutura , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/ultraestrutura , Rodopsina/deficiência , Rodopsina/fisiologia , Espalhamento de Radiação
3.
Biol Open ; 1(3): 220-31, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213412

RESUMO

Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

4.
Methods Cell Biol ; 95: 221-45, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20466138

RESUMO

In vitro assays that reconstitute the dynamic behavior of microtubules provide insight into the roles of microtubule-associated proteins (MAPs) in regulating the growth, shrinkage, and catastrophe of microtubules. The use of total internal reflection fluorescence microscopy with fluorescently labeled tubulin and MAPs has allowed us to study microtubule dynamics at the resolution of single molecules. In this chapter we present a practical overview of how these assays are performed in our laboratory: fluorescent labeling methods, strategies to prolong the time to photo-bleaching, preparation of stabilized microtubules, flow-cells, microtubule immobilization, and finally an overview of the workflow that we follow when performing the experiments. At all stages, we focus on practical tips and highlight potential stumbling blocks.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microtúbulos/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Cor , Corantes Fluorescentes/farmacologia , Humanos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Modelos Biológicos , Coloração e Rotulagem/métodos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...