Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 875: 162678, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894073

RESUMO

Most river ecosystems are exposed to multiple anthropogenic stressors affecting the composition and functionality of benthic communities. Identifying main causes and detecting potentially alarming trends in time depends on the availability of long-term monitoring data sets. Our study aimed to improve the knowledge about community effects of multiple stressors that is needed for effective, sustainable management and conservation. We conducted a causal analysis to detect the dominant stressors and hypothesised that multiple stressors, such as climate change and multiple biological invasions, reduce biodiversity and thus endanger ecosystem stability. Using a data set from 1992 to 2019 for the benthic macroinvertebrate community of a 65-km stretch of the upper Elbe river in Germany, we evaluated the effects of alien species, temperature, discharge, phosphorus, pH and abiotic conditional variables on the taxonomic and functional composition of the benthic community and analysed the temporal behaviour of biodiversity metrics. We observed fundamental taxonomic and functional changes in the community, with a shift from collectors/gatherers to filter feeders and feeding opportunists preferring warm temperatures. A partial dbRDA revealed significant effects of temperature and alien species abundance and richness. The occurrence of distinct phases in the development of community metrics suggests a temporally varying impact of different stressors. Taxonomic and functional richness responded more sensitively than the diversity metrics whereas the functional redundancy metric remained unchanged. Especially the last 10-year phase, however, showed a decline in richness metrics and an unsaturated, linear relationship between taxonomic and functional richness, which rather indicates reduced functional redundancy. We conclude that the varying anthropogenic stressors over three decades, mainly biological invasions and climate change, affected the community severely enough to increase its vulnerability to future stressors. Our study highlights the importance of long-term monitoring data and emphasises a careful use of biodiversity metrics, preferably considering also community composition.


Assuntos
Ecossistema , Invertebrados , Animais , Rios/química , Mudança Climática , Monitoramento Ambiental , Biodiversidade , Espécies Introduzidas
2.
Toxins (Basel) ; 12(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935921

RESUMO

Increased anthropogenic nutrient input has led to eutrophication of lakes and ponds, resulting worldwide in more frequent and severe cyanobacterial blooms. In particular, enhanced availability of phosphorus (P) can promote cyanobacterial mass developments and may affect the content of secondary metabolites in cyanobacteria, such as protease inhibitors (PIs). PIs are common among cyanobacteria and have been shown to negatively affect herbivorous zooplankton. Here, we test the hypothesis that P-limitation reduces the growth of Microcystis, but increases the content of PIs. In batch culture experiments with eight different initial phosphate concentrations (5-75 µM) we determined growth, stoichiometry, and PI content of Microcystis aeruginosa NIVA Cya 43. This strain produces the protease inhibitor BN920 that is converted by chlorination to CP954, which constitutes the major PI in this strain. C:N:P-ratios of the biomass indicated variation of P-limitation with treatment and time. When normalized to biomass, the PI content varied up to nearly nineteen-fold with treatment and time and was highest in the low-P treatments, especially during the mid-exponential growth phase. However, these effects were alleviated under nitrogen co-limitation. The content of CP954 showed an inverse u-shaped response to growth rate and C:N-ratio of the cyanobacterial biomass, whereas it increased with cyanobacterial C:P. The results indicate that P-limitation supports a higher content of defensive PIs and may indirectly foster cyanobacterial blooms by increasing the negative interference of cyanobacteria with their consumers.


Assuntos
Microcystis/fisiologia , Inibidores de Proteases/metabolismo , Microcistinas/metabolismo , Fosfatos/metabolismo
3.
Oecologia ; 182(2): 405-17, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27345442

RESUMO

Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)--eicosapentaenoic acid (EPA)--has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet. Here, we hypothesize that the demand for EPA in Daphnia is size-dependent and that bigger species have a higher EPA demand. To elucidate this, a growth experiment was conducted in which at 20 °C three Daphnia taxa (small-sized D. longispina complex, medium-sized D. pulicaria, and large-bodied D. magna) were fed Synechococcus elongatus supplemented with cholesterol and increasing concentrations of EPA. In addition, fatty acid analyses of Daphnia were performed. Our results show that the saturation threshold for EPA-dependent growth increased with increasing body size. This increase in thresholds with body size may provide another mechanism contributing to the prevalence of small-bodied cladocera in warm habitats and to the midsummer decline of large cladocera in eutrophic water bodies.


Assuntos
Daphnia , Ácido Eicosapentaenoico , Animais , Tamanho Corporal , Ecossistema , Fitoplâncton
4.
PLoS One ; 7(3): e30598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427799

RESUMO

BACKGROUND: Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness. METHODOLOGY/PRINCIPAL FINDINGS: In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths. CONCLUSIONS/SIGNIFICANCE: Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change.


Assuntos
Adaptação Biológica/fisiologia , Mudança Climática , Ecossistema , Paramecium caudatum/fisiologia , Temperatura , Europa (Continente) , Geografia , Indonésia , Microscopia , Modelos Biológicos , Análise Multivariada , Paramecium caudatum/genética , Dinâmica Populacional , Comportamento Espacial/fisiologia , Especificidade da Espécie , Estatísticas não Paramétricas
5.
Mar Biol ; 159(11): 2543-2559, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24391280

RESUMO

To predict the coherence in local responses to large-scale climatic forcing among aquatic systems, we developed a generalized approach to compare long-term data of dimictic water bodies based on phenomenologically defined hydrographic events. These climate-sensitive phases (inverse stratification, spring overturn, early thermal stratification, summer stagnation) were classified in a dual code (cold/warm) based on threshold temperatures. Accounting for a latitudinal gradient in seasonal timing of phases derived from gradients in cumulative irradiation (2.2 days per degree latitude), we found a high spatial and temporal coherence in warm-cold patterns for six lakes (84 %) and the Baltic Sea (78 %), even when using the same thresholds for all sites. Similarity to CW-codes for the North Sea still was up to 72 %. The approach allows prediction of phase-specific warming trends and resulting instantaneous or time-delayed ecological responses. Exemplarily, we show that warming during early thermal stratification controls food-web-mediated effects on key species during summer.

6.
Eur J Protistol ; 47(2): 124-37, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21277756

RESUMO

The ongoing climate change has motivated numerous studies investigating the temperature response of various organisms, especially that of ectotherms. To correctly describe the thermal performance of these organisms, functions are needed which sufficiently fit to the complete optimum curve. Surprisingly, model-comparisons for the temperature-dependence of population growth rates of an important ectothermic group, the protozoa, are still missing. In this study, temperature reaction norms of natural isolates of the freshwater protist Paramecium caudatum were investigated, considering nearly the entire temperature range. These reaction norms were used to estimate thermal performance curves by applying a set of commonly used model functions. An information theory approach was used to compare models and to identify the best ones for describing these data. Our results indicate that the models which can describe negative growth at the high- and low-temperature branch of an optimum curve are preferable. This is a prerequisite for accurately calculating the critical upper and lower thermal limits. While we detected a temperature optimum of around 29 °C for all investigated clonal strains, the critical thermal limits were considerably different between individual clones. Here, the tropical clone showed the narrowest thermal tolerance, with a shift of its critical thermal limits to higher temperatures.


Assuntos
Paramecium caudatum/fisiologia , Paramecium caudatum/efeitos da radiação , Adaptação Fisiológica , Modelos Estatísticos , Paramecium caudatum/crescimento & desenvolvimento , Dinâmica Populacional , Temperatura
7.
Appl Environ Microbiol ; 73(21): 6994-7002, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827326

RESUMO

Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (C(i,i)). In the first experiment, MCYST production was studied under increased C(i,i) deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the C(i,i) status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative C(i,i) deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased C(i,i) deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased C(i,i) deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-C(i,i) conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.


Assuntos
Compostos Inorgânicos de Carbono/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Peptídeos Cíclicos/biossíntese , Regulação Bacteriana da Expressão Gênica , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficocianina/metabolismo
8.
Oecologia ; 153(4): 997-1008, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17624556

RESUMO

Phenology and seasonal succession in aquatic ecosystems are strongly dependent on physical factors. In order to promote investigations into this coupling, methods of characterising annual time series of phytoplankton were derived and applied to a 31-year data set from Saidenbach Reservoir (Saxony, Germany). Field data are often scarce and irregularly sampled, particularly in the transition period from winter to spring, so reliable methods of determining cardinal dates in the time series are necessary. The proposed methods were used to determine the beginning, maximum and end of the spring mass development of phytoplankton by estimating the inflexion points (A), fitting a Weibull-type function (B) and fitting linear segments to the logarithmic values (C). For the data set from Saidenbach Reservoir, all three methods proved to be relevant to the analysis of long-term trends. Differences between the maxima determined by the different methods seemed small, but there were deviations when the maximum was related to physical factors such as ice-out. The Weibull-type fit gave the most reliable and comprehensible results and is recommended for trend analyses. For all methods, long-term analysis of the duration of the spring mass development and the duration of the spring full circulation revealed a period of consistently low values (1975-1990) followed by a period of higher values (1990-2005). These periods were also identified for the date of ice-out, although in this case there was a period of high values followed by a period of low values. A sensitivity analysis that compared results from subsampled time series with increasing time intervals indicated that a minimum of one sample every three weeks is needed to obtain reliable results.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Água Doce , Alemanha , Estações do Ano , Fatores de Tempo , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...