Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1352550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425479

RESUMO

The salt (NaCl) content in processed meats must be reduced because of its adverse effects on cardiovascular health. However, reducing salt in meat products typically leads to a lower taste intensity and, thus, consumer acceptability. Industry interventions must reduce salt content while maintaining taste, quality, and consumer acceptability. In this context, high-pressure processing (HPP) has been proposed to enhance saltiness perception, though there are contradictory reports to date. The present work aimed to conduct a targeted experiment to ascertain the influence of HPP (300/600 MPa) and cooking (71°C) on saltiness perception and sensory acceptability of meat products. HPP treatment (300/600 MPa) did enhance those two sensory attributes (approx. +1 on a 9-point hedonic scale) in raw (uncooked) cured pork loins but did not in their cooked counterparts. Further, the partition coefficient of sodium (PNa+), as an estimate of Na+ binding strength to the meat matrix, and the content of umami-taste nucleotides were investigated as potential causes. No effect of cooking (71°C) and HPP (300/600 MPa) could be observed on the PNa+ at equilibrium. However, HPP treatment at 300 MPa increased the inosine-5'-monophosphate (IMP) content in raw cured pork loins. Finally, hypothetical HPP effects on taste-mediating molecular mechanisms are outlined and discussed in light of boosting the sensory perception of raw meat products as a strategy to achieve effective salt reductions while keeping consumer acceptability.

2.
Front Microbiol ; 12: 691502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690944

RESUMO

Methane emissions by ruminants contribute to global warming and result in a loss of dietary energy for the animals. One possibility of reducing methane emissions is by dietary strategies. In the present trial, we investigated the long-term effects of Mootral, a feed additive consisting of garlic powder (Allium sativum) and bitter orange extracts (Citrus aurantium), on fermentation parameters and the microbial community in the rumen simulation technique (RUSITEC) system. The experiment lasted 38 days and was divided into three phases: an equilibration period of 7 days, a baseline period (BL) of 3 days, and experimental period (EP) of 28 days. Twelve fermentation vessels were divided into three groups (n = 4): control (CON), short-term (ST), and long-term (LT) application. From day 11 to day 27, 1.7 g of Mootral was added to the ST vessels; LT vessels received 1.7 g of Mootral daily for the entire EP. With the onset of Mootral application, methane production was significantly reduced in both groups until day 18. Thereafter, the production rate returned to the initial quantity. Furthermore, the short chain fatty acid fermentation profile was significantly altered by Mootral application; the molar proportion of acetate decreased, while the proportions of propionate and butyrate increased. Metabolomic analysis revealed further changes in metabolite concentrations associated with the Mootral supplementation period. The methyl coenzyme-M reductase gene copy number was reduced in the liquid and solid phase, whereas the treatment did not affect the abundance of bacteria. At the end of the BL, Methanomicrobia was the most abundant archaeal class. Mootral supplementation induced an increase in the relative abundance of Methanomassiliicoccales and a reduction in the relative abundance of Methanomicrobia, however, this effect was transient. Abundances of bacterial families were only marginally altered by the treatment. In conclusion, Mootral has the transient ability to reduce methane production significantly due to a selective effect on archaea numbers and archaeal community composition with little effect on the bacterial community.

3.
Metabolites ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922306

RESUMO

The study aimed to investigate possible systematic effects in the basic underlying variability of individual metabolomic data. In this context, the extent of gender- and genotype-dependent differences reflected in the metabolic composition of three tissues in fattening pigs was determined. The 40 pigs belonged to the genotypes PIx(LWxGL) and PIxGL with gilts and boars, respectively. Blood and tissue samples from M. longissimus dorsi and liver were directly taken at the slaughtering plant and directed to GC × GC qMS metabolite analysis. Differences were observed for various metabolite classes like amino acids, fatty acids, sugars, or organic acids. Gender-specific differences were much more pronounced than genotype-related differences, which could be due to the close genetic relation of the fattening pigs. However, the metabolic dimorphism between gilts and boars was found to be genotype-dependent, and vice versa metabolic differences between genotypes were found to be gender-dependent. Most interestingly, integration into metabolic pathways revealed different patterns for carbon (C) and nitrogen (N) usage in boars and gilts. We suppose a stronger N-recycling and increased energy metabolism in boars, whereas, in gilts, more N is presumably excreted and remaining carbon skeletons channeled into lipogenesis. Associations of metabolites to meat quality factors confirmed the applicability of metabolomics approaches for a better understanding about the impact of drivers (e.g., gender, age, breed) on physiological processes influencing meat quality. Due to the huge complexity of the drivers-traits-network, the derivation of independent biomarkers for meat quality prediction will hardly be possible.

4.
Foods ; 9(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784468

RESUMO

The adulteration of fresh turkey meat by the undeclared addition of protein hydrolysates is of interest for fraudsters due to the increase of the economic gain by substituting meat with low cost ingredients. The aim of this study was to compare the suitability of three different analytical techniques such as GC-MS and 1H-NMR with HPLC-UV/VIS as a targeted method, for the detection of with protein hydrolysates adulterated turkey meat. For this, turkey breast muscles were treated with different plant- (e.g., wheat) and animal-based (e.g., gelatin, casein) protein hydrolysates with different hydrolyzation degrees (15-53%: partial; 100%: total), which were produced by enzymatic and acidic hydrolysis. A water- and a nontreated sample (REF) served as controls. The data analyses revealed that the hydrolysate-treated samples had significantly higher levels of amino acids (e.g., leucine, phenylalanine, lysine) compared with REF observed with all three techniques concordantly. Furthermore, the nontargeted metabolic profiling (GC-MS and NMR) showed that sugars (glucose, maltose) and/or by-products (build and released during acidic hydrolyses, e.g., levulinic acid) could be used for the differentiation between control and hydrolysates (type, degrees). The combination of amino acid profiling and additional compounds gives stronger evidence for the detection and classification of adulteration in turkey breast meat.

5.
J Exp Bot ; 71(1): 138-153, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536111

RESUMO

In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-ß-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.


Assuntos
Metabolismo dos Carboidratos , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Transporte Biológico , Grão Comestível/genética , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
6.
Plant Cell Environ ; 41(6): 1311-1330, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29385242

RESUMO

Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase-activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root-tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity.


Assuntos
Membrana Celular/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Proteoma/metabolismo , Proteômica/métodos , Salinidade , Ácido Abscísico/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cromatografia de Fase Reversa , Genótipo , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sesquiterpenos/metabolismo , Cloreto de Sódio/farmacologia , Esteroides/metabolismo , Estresse Fisiológico/efeitos dos fármacos
7.
J Exp Bot ; 68(16): 4595-4612, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981782

RESUMO

Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo
8.
Front Plant Sci ; 8: 1617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28974956

RESUMO

In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.

9.
Curr Protoc Plant Biol ; 1(4): 574-591, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31725964

RESUMO

Higher plants are composed of a multitude of tissues with particular functions, reflected by distinct profiles of transcripts, proteins, and metabolites. Although the rapid development of "omics" technologies has advanced plant science tremendously within recent years, analysis is frequently performed on whole organ or whole plant extracts, causing the loss of spatial information. Mass spectrometry-based imaging (MSI) approaches have become a powerful tool to decipher spatially resolved molecular information. Matrix-assisted laser desorption/ionization (MALDI) is the most widespread ionization method utilized for MSI and has recently been applied to plant science. A range of different plant organs and tissues has been successfully analyzed by MSI, and patterns of various classes of metabolites from primary and secondary metabolism have been obtained. This protocol describes a method for analysis of spatial metabolite distributions in cryosections of developing barley grains. Detailed procedures for sample preparation, mass spectrometry measurement, and data analysis are provided. © 2016 by John Wiley & Sons, Inc.

10.
Plant J ; 82(5): 822-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25891826

RESUMO

Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.


Assuntos
Arabidopsis/metabolismo , Radical Hidroxila/química , Sacarose/análogos & derivados , Proteínas de Arabidopsis/metabolismo , Sequestradores de Radicais Livres/metabolismo , Hordeum/metabolismo , Radical Hidroxila/metabolismo , Oxirredução , Estresse Oxidativo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sacarose/química , Sacarose/metabolismo , Sacarose/farmacocinética , Espectrometria de Massas em Tandem , Distribuição Tecidual
11.
Front Plant Sci ; 6: 1245, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834760

RESUMO

Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [ß(2,1); ß(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.

12.
Plant Cell ; 26(9): 3728-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25271242

RESUMO

Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.


Assuntos
Frutanos/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Radical Hidroxila/metabolismo , Íons , Metaboloma , Mutação/genética , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
13.
Methods Mol Biol ; 1072: 223-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136526

RESUMO

Imaging techniques based on mass spectrometry (MS) have become powerful approaches to decipher the spatial distribution of metabolites and proteins. MS imaging (MSI) mostly relies on matrix-assisted laser desorption/ionization coupled to MS detection, but desorption electrospray ionization is also frequently used. Here we describe our current protocols for MALDI-MSI of seed sections and for root tissue. Detailed procedures for cryo-sectioning, matrix application, image capture, mass spectrometry measurement and data analysis are given.


Assuntos
Hordeum/metabolismo , Imageamento Tridimensional , Metaboloma , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/metabolismo , Análise de Componente Principal , Sementes/metabolismo , Tripsina/metabolismo
14.
Mol Plant ; 7(2): 336-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24004485

RESUMO

Soil salinity is one of the most severe abiotic stress factors threatening agriculture worldwide. Hence, particular interest exists in unraveling mechanisms leading to salt tolerance and improved crop plant performance on saline soils. Barley is considered to be one of the most salinity-tolerant crops, but varying levels of tolerance are well characterized. A proteomic analysis of the roots of two contrasting cultivars (cv. Steptoe and cv. Morex) is presented. Young plants were exposed to a period of 1, 4, 7, or 10 d at 0, 100, or 150 mM NaCl. The root proteome was analyzed based on two-dimensional gel electrophoresis. A number of cultivar-specific and salinity stress-responsive proteins were identified. Mass spectrometry-based identification was successful for 74 proteins, and a hierarchical clustering analysis grouped these into five clusters based on similarity of expression profile. The rank product method was applied to statistically access the early and late responses, and this delivered a number of new candidate proteins underlying salinity tolerance in barley. Among these were some germin-like proteins, some pathogenesis-related proteins, and numerous as-yet uncharacterized proteins. Notably, proteins involved in detoxification pathways and terpenoid biosynthesis were detected as early responsive to salinity and may function as a means of modulating growth-regulating mechanisms and membrane stability via fine tuning of phytohormone and secondary metabolism in the root.


Assuntos
Hordeum/fisiologia , Proteínas de Plantas/química , Cloreto de Sódio/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Genótipo , Hordeum/química , Hordeum/classificação , Hordeum/genética , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Proteômica , Tolerância ao Sal , Especificidade da Espécie , Estresse Fisiológico
15.
BMC Genet ; 14: 97, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088365

RESUMO

BACKGROUND: Flavonoids are an important class of secondary compounds in angiosperms. Next to certain biological functions in plants, they play a role in the brewing process and have an effect on taste, color and aroma of beer. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters. RESULTS: Five genes encoding phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H) and dihydroflavonol reductase (DFR) of the phenylpropanoid biosynthesis pathway were partially resequenced in 16 diverse barley reference genotypes. Their localization in the barley genome, their genetic structure, and their genetic variation e.g. single nucleotide polymorphism (SNP) and Insertion/Deletion (InDel) patterns were revealed. In total, 130 SNPs and seven InDels were detected. Of these, 21 polymorphisms were converted into high-throughput pyrosequencing markers. The resulting SNP and haplotype patterns were used to calculate associations with kernel and malting quality parameters. CONCLUSIONS: SNP patterns were found to be highly variable for the investigated genes. The developed high-throughput markers are applicable for assessing the genetic variability and for the determination of haplotype patterns in a set of barley accessions. The candidate genes PAL, C4H and F3H were shown to be associated to several malting properties like glassiness (PAL), viscosity (C4H) or to final attenuation (F3H).


Assuntos
Genes de Plantas , Marcadores Genéticos/genética , Hordeum/genética , Polimorfismo de Nucleotídeo Único , Aciltransferases/genética , Oxirredutases do Álcool/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Flavonoides/biossíntese , Deleção de Genes , Variação Genética , Genótipo , Haplótipos , Hordeum/metabolismo , Oxigenases de Função Mista/genética , Mutagênese Insercional , Fenilalanina Amônia-Liase/genética , Transcinamato 4-Mono-Oxigenase/genética
16.
New Phytol ; 193(3): 806-815, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126099

RESUMO

• Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) of tissues provides the means to analyse the spatial distributions of small molecules and proteins within tissues. This imaging technique is commonplace in medicinal and pharmaceutical research, but its application in plant science is very recent. Broader introduction requires specific adaptations for plant tissues. Sample preparation is of paramount importance in order to obtain high-quality spectra providing sufficient spatial resolution for compounds. Optimization is required for sectioning, choice of matrix and means of matrix deposition. • Here, we present our current protocols for the detection of small molecules in cryodissected immature barley (Hordeum vulgare) grains and tobacco (Nicotiana tabacum) roots. • Examples of MALDI-MSI measurements are provided, and the level of reproducibility across biological replicates is addressed. Furthermore, our approaches for the validation of distribution patterns and for the identification of molecules are described. • Finally, we discuss how MALDI-MSI can contribute to applied plant research.


Assuntos
Hordeum/metabolismo , Imageamento Tridimensional/métodos , Nicotiana/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Crioultramicrotomia , Reprodutibilidade dos Testes , Estatística como Assunto
17.
Proteomics ; 11(9): 1840-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21462348

RESUMO

Recent advances in instrumentation and sample preparation have facilitated the mass spectrometric (MS) imaging of a large variety of biological molecules from small metabolites to large proteins. The technique can be applied at both the tissue and the single-cell level, and provides information regarding the spatial distribution of specific molecules. Nevertheless, the use of MS imaging in plant science remains far from routine, and there is still a need to adapt protocols to suit specific tissues. We present an overview of MALDI-imaging MS (MSI) technology and its use for the analysis of plant tissue. Recent methodological developments have been summarized, and the major challenges involved in using MALDI-MSI, including sample preparation, the analysis of metabolites and peptides, and strategies for data evaluation are all discussed. Some attention is given to the identification of differentially distributed compounds. To date, the use of MALDI-MSI in plant research has been limited. Examples include leaf surface metabolite maps, the characterization of soluble metabolite translocation in planta, and the profiling of protein/metabolite patterns in cereal grain cross-sections. Improvements to both sample preparation strategies and analytical platforms (aimed at both spectrum acquisition and post-acquisition analysis) will enhance the relevance of MALDI-MSI technology in plant research.


Assuntos
Peptídeos/análise , Proteínas de Plantas/análise , Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolômica/métodos , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...