Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39043185

RESUMO

Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.

2.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363548

RESUMO

Radiation exposure occurs during medical procedures, nuclear accidents, or spaceflight, making effective medical countermeasures a public health priority. Naïve T cells are highly sensitive to radiation-induced depletion, although their numbers recover with time. Circulating memory CD8+ T cells are also depleted by radiation; however, their numbers do not recover. Critically, the impact of radiation exposure on tissue-resident memory T cells (TRM) remains unknown. Here, we found that sublethal thorax-targeted radiation resulted in the rapid and prolonged numerical decline of influenza A virus (IAV)-specific lung TRM in mice, but no decline in antigen-matched circulating memory T cells. Prolonged loss of lung TRM was associated with decreased heterosubtypic immunity. Importantly, boosting with IAV-epitope expressing pathogens that replicate in the lungs or peripheral tissues or with a peripherally administered mRNA vaccine regenerated lung TRM that was derived largely from circulating memory CD8+ T cells. Designing effective vaccination strategies to regenerate TRM will be important in combating the immunological effects of radiation exposure.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Exposição à Radiação , Camundongos , Animais , Linfócitos T CD8-Positivos , Células T de Memória , Pulmão , Memória Imunológica
3.
Brain ; 147(2): 566-589, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776513

RESUMO

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Malária Cerebral/prevenção & controle , Células Endoteliais/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Linfócitos T CD8-Positivos , Endotélio/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Proc Natl Acad Sci U S A ; 120(27): e2302785120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364124

RESUMO

The increasing use of nuclear energy sources inevitably raises the risk of accidental or deliberate radiation exposure and associated immune dysfunction. However, the extent to which radiation exposure impacts memory CD8 T cells, potent mediators of immunity to recurring intracellular infections and malignancies, remains understudied. Using P14 CD8 T cell chimeric mice (P14 chimeras) with an lymphocytic choriomeningitis virus (LCMV) infection model, we observed that sublethal (5Gy) whole-body irradiation (WBI) induced a rapid decline in the number of naive (TN) and P14 circulating memory CD8 T cells (TCIRCM), with the former being more susceptible to radiation-induced numeric loss. While TN cell numbers rapidly recovered, as previously described, the number of P14 TCIRCM cells remained low at least 9 mo after radiation exposure. Additionally, the remaining P14 TCIRCM in irradiated hosts exhibited an inefficient transition to a central memory (CD62L+) phenotype compared to nonirradiated P14 chimeras. WBI also resulted in long-lasting T cell intrinsic deficits in memory CD8 T cells, including diminished cytokine and chemokine production along with impaired secondary expansion upon cognate Ag reencounter. Irradiated P14 chimeras displayed significantly higher bacterial burden after challenge with Listeria monocytogenes expressing the LCMV GP33-41 epitope relative to nonirradiated controls, likely due to radiation-induced numerical and functional impairments. Taken together, our findings suggest that sublethal radiation exposure caused a long-term numerical, impaired differentiation, and functional dysregulation in preexisting TCIRCM, rendering previously protected hosts susceptible to reinfection.


Assuntos
Coriomeningite Linfocítica , Irradiação Corporal Total , Camundongos , Animais , Recidiva Local de Neoplasia , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica , Memória Imunológica , Camundongos Endogâmicos C57BL
5.
J Immunol ; 210(9): 1305-1313, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939394

RESUMO

Production of IFN-γ by CD4 T cells is widely theorized to control Plasmodium parasite burden during blood-stage malaria. Surprisingly, the specific and crucial mechanisms through which this highly pleiotropic cytokine acts to confer protection against malarial disease remain largely untested in vivo. Here we used a CD4 T cell-restricted Cre-Lox IFN-γ excision mouse model to test whether and how CD4 T cell-derived IFN-γ controls blood-stage malaria. Although complete absence of IFN-γ compromised control of the acute and the chronic, recrudescent blood-stage infections with P. c. chabaudi, we identified a specific, albeit modest, role for CD4 T cell-derived IFN-γ in limiting parasite burden only during the chronic stages of P. c. chabaudi malaria. CD4 T cell IFN-γ promoted IgG Ab class switching to the IgG2c isotype during P. c. chabaudi malaria in C57BL/6 mice. Unexpectedly, our data do not support gross defects in phagocytic activity in IFN-γ-deficient hosts infected with blood-stage malaria. Together, our data confirm CD4 T cell-dependent roles for IFN-γ but suggest CD4 T cell-independent roles for IFN-γ in immune responses to blood-stage malaria.


Assuntos
Malária , Plasmodium chabaudi , Camundongos , Animais , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL , Interferon gama
6.
Proc Natl Acad Sci U S A ; 120(2): e2210181120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595704

RESUMO

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Humanos , Hepatócitos/metabolismo , Fígado , Malária/parasitologia , Caspases/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
Cell Rep ; 37(5): 109956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731605

RESUMO

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/sangue , Listeriose/imunologia , Listeriose/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Malária/sangue , Malária/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Parasitária , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagócitos/parasitologia , Plasmodium berghei/patogenicidade , Fatores de Tempo
8.
J Immunol ; 207(11): 2631-2635, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716185

RESUMO

Radiation-attenuated sporozoite (RAS) vaccination offers hope for global malaria control through induction of protective liver-stage-specific memory CD8 T cells. Effective RAS vaccination regimens exist; however, widespread implementation remains unfeasible. A key difficulty resides in the need to administer three or more doses i.v. to achieve sufficient immunity. Strategies to reduce the number of RAS doses are therefore desirable. Here we used mice to model human immune responses to a single, suboptimal weight-normalized RAS dose administered i.v. followed by subunit vaccination to amplify liver-stage-specific memory CD8 T cells. RAS+subunit prime-boost regimens increased the numbers of liver-stage-specific memory CD8 T cells to a level greater than is present after one RAS vaccination. Both i.v. and i.m. subunit vaccine delivery induced immunity in mice, and many vaccinated mice completely cleared liver infection. These findings are particularly relevant to human vaccine development because RAS+subunit prime-boost vaccination would reduce the logistical challenges of multiple RAS-only immunizations.


Assuntos
Hepatopatias/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Esporozoítos/imunologia , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
9.
J Immunol ; 205(8): 2222-2230, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32887747

RESUMO

CRISPR/Cas9 technology has revolutionized rapid and reliable gene editing in cells. Although many cell types have been subjected to CRISPR/Cas9-mediated gene editing, there is no evidence of success in genetic alteration of Ag-experienced memory CD8 T cells. In this study, we show that CRISPR/Cas9-mediated gene editing in memory CD8 T cells precludes their proliferation after Ag re-encounter in vivo. This defect is mediated by the proapoptotic transcription factor p53, a sensor of DNA damage. Temporarily inhibiting p53 function offers a window of opportunity for the memory CD8 T cells to repair the DNA damage, facilitating robust recall responses on Ag re-encounter. We demonstrate this by functionally altering memory CD8 T cells using CRISPR/Cas9-mediated targeted gene disruption under the aegis of p53siRNA in the mouse model. Our approach thus adapts the CRISPR/Cas9 technology for memory CD8 T cells to undertake gene editing in vivo, for the first time, to our knowledge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas , Proliferação de Células/genética , Memória Imunológica/genética , Proteína Supressora de Tumor p53 , Animais , Antígenos/imunologia , Dano ao DNA/genética , Dano ao DNA/imunologia , Camundongos , Camundongos Transgênicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
10.
Nat Immunol ; 21(8): 938-949, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572242

RESUMO

The central nervous system (CNS) is classically viewed as immune-privileged; however, recent advances highlight interactions between the peripheral immune system and CNS in controlling infections and tissue homeostasis. Tissue-resident memory (TRM) CD8+ T cells in the CNS are generated after brain infections, but it is unknown whether CNS infection is required to generate brain TRM cells. We show that peripheral infections generate antigen-specific CD8+ memory T cells in the brain that adopt a unique TRM signature. Upon depletion of circulating and perivascular memory T cells, this brain signature was enriched and the surveilling properties of brain TRM cells was revealed by intravital imaging. Notably, peripherally induced brain TRM cells showed evidence of rapid activation and enhanced cytokine production and mediated protection after brain infections. These data reveal that peripheral immunizations can generate brain TRM cells and will guide potential use of T cells as therapeutic strategies against CNS infections and neurological diseases.


Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções do Sistema Nervoso Central/imunologia , Memória Imunológica/imunologia , Animais , Infecções Bacterianas/imunologia , Encéfalo/citologia , Ativação Linfocitária/imunologia , Camundongos , Viroses/imunologia
11.
Proc Natl Acad Sci U S A ; 116(23): 11396-11401, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097590

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown. Here, we show that mice lacking α-DGN exhibit significantly higher viral titers in the lungs after Influenza A virus (IAV) infection (strain A/Puerto Rico/8/1934 H1N1), suggesting an inability to control virus load. Consistent with this, overexpression of α-DGN before infection or intranasal treatment with recombinant α-DGN prior and during infection, significantly reduced IAV titers in the lungs of wild-type mice. Hemagglutination inhibition assays using recombinant α-DGN showed in vitro neutralization of IAV. Collectively, our results support a protective role for α-DGN in IAV proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Distroglicanas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/virologia , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/virologia , Linhagem Celular , Glicosilação/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Carga Viral/métodos
12.
Cell Host Microbe ; 25(4): 565-577.e6, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905437

RESUMO

Plasmodium sporozoites inoculated by mosquitoes migrate to the liver and infect hepatocytes prior to release of merozoites that initiate symptomatic blood-stage malaria. Plasmodium parasites are thought to be restricted to hepatocytes throughout this obligate liver stage of development, and how liver-stage-expressed antigens prime productive CD8 T cell responses remains unknown. We found that a subset of liver-infiltrating monocyte-derived CD11c+ cells co-expressing F4/80, CD103, CD207, and CSF1R acquired parasites during the liver stage of malaria, but only after initial hepatocyte infection. These CD11c+ cells found in the infected liver and liver-draining lymph nodes exhibited transcriptionally and phenotypically enhanced antigen-presentation functions and primed protective CD8 T cell responses against Plasmodium liver-stage-restricted antigens. Our findings highlight a previously unrecognized aspect of Plasmodium biology and uncover the fundamental mechanism by which CD8 T cell responses are primed against liver-stage malaria antigens.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Hepatócitos/parasitologia , Imunidade Celular , Fígado/imunologia , Malária/imunologia , Monócitos/parasitologia , Antígeno CD11c/análise , Fígado/parasitologia , Monócitos/química , Monócitos/imunologia , Plasmodium/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-32161909

RESUMO

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). We have shown that CNS-specific CD8 T cells (CNS-CD8) possess a disease suppressive function in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Previous studies have focused on the role of these cells predominantly in chronic models of disease, but the majority of MS patients present with a relapsing-remitting disease course. In this study, we evaluated the therapeutic role of CD8 T cells in the context of relapsing-remitting disease (RR-EAE), using SJL mice. We found that PLP178-191- and MBP84-104-CD8 ameliorated disease severity in an antigen-specific manner. In contrast, PLP139-151-CD8 did not suppress disease. PLP178-191-CD8 were able to reduce the number of relapses even when transferred during ongoing disease. We further ascertained that the suppressive subset of CD8 T cells was contained within the CD25+ CD8 T cell compartment post-in vitro activation with PLP178-191. Using Listeria monocytogenes (LM) encoding CNS antigens to preferentially prime suppressive CDS T cells in vivo, we show that LM infection induced disease suppressive CD8 T cells that protected and treated PLP178-191 disease. Importantly, a combination of PLP178-191-CDs transfer boosted by LM-PLP175-194 infection effectively treated ongoing disease induced by a non-cognate peptide (PLP139-151), indicating that this approach could be effective even in the context of epitope spreading. These data support a potential immunotherapeutic strategy using CD8 transfer and/or LM vaccination to boost disease regulatory CD8 T cells.

14.
PLoS Pathog ; 14(1): e1006810, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293660

RESUMO

Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV) infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/virologia , Memória Imunológica , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Células Cultivadas , Feminino , Humanos , Doenças do Sistema Imunitário/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/imunologia , Índice de Gravidade de Doença
15.
Immunity ; 47(5): 835-847.e4, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150238

RESUMO

Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vß8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vß8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1ß residues present exclusively in the Vß8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vß8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.


Assuntos
Antígeno de Histocompatibilidade H-2D/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Receptores de Antígenos de Linfócitos T/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Regiões Determinantes de Complementaridade , Epitopos , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia
16.
Sci Rep ; 7(1): 1519, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484224

RESUMO

CD8 T-cells predominate in CNS lesions of MS patients and display oligoclonal expansion. However, the role of myelin-specific CD8 T-cells in disease remains unclear, with studies showing protective and pathogenic roles in EAE. We demonstrated a disease-suppressive function for CNS-specific CD8 T-cells in a model where the antigen is exogenously administered in vivo and used for in vitro activation. To probe the nature of the CD8 response elicited by endogenously presented myelin antigens in vivo, we developed a novel approach utilizing infection with Listeria monocytogenes (LM) encoding proteolipid protein peptide (PLP) amino acids 178-191 (LM-PLP). LM-PLP infection preferentially induced PLP-specific CD8 T-cell responses. Despite the induction of PLP-specific CD8 T-cells, LM-PLP infection did not result in disease. In fact, LM-PLP infection resulted in significant amelioration of PLP178-191-induced EAE. Disease suppression was not observed in mice deficient in CD8 T-cells, IFN-γ or perforin. DTH responses and CNS infiltration were reduced in protected mice, and their CD4 T-cells had reduced capacity to induce tissue inflammation. Importantly, infection with LM-PLP ameliorated established disease. Our studies indicate that CD8 T-cells induced by endogenous presentation of PLP178-191 attenuate CNS autoimmunity in models of EAE, implicating the potential of this approach as a novel immunotherapeutic strategy.


Assuntos
Antígenos de Bactérias/metabolismo , Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Listeria/metabolismo , Ativação Linfocitária/imunologia , Animais , Encefalomielite Autoimune Experimental/patologia , Imunidade Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Proteolipídica de Mielina/imunologia , Especificidade de Órgãos
18.
Am J Physiol Heart Circ Physiol ; 311(1): H146-56, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106041

RESUMO

Carotid artery disease is a major contributor to stroke and cognitive deficits. Angiotensin II (Ang II) promotes vascular dysfunction and disease through mechanisms that include the IL-6/STAT3 pathway. Here, we investigated the importance of suppressor of cytokine signaling 3 (SOCS3) in models of Ang II-induced vascular dysfunction. We examined direct effects of Ang II on carotid arteries from SOCS3-deficient (SOCS3(+/-)) mice and wild-type (WT) littermates using organ culture and then tested endothelial function with acetylcholine (ACh). A low concentration of Ang II (1 nmol/l) did not affect ACh-induced vasodilation in WT but reduced that of SOCS3(+/-) mice by ∼50% (P < 0.05). In relation to mechanisms, effects of Ang II in SOCS3(+/-) mice were prevented by inhibitors of STAT3, IL-6, NF-κB, or superoxide. Systemic Ang II (1.4 mg/kg per day for 14 days) also reduced vasodilation to ACh in WT. Surprisingly, SOCS3 deficiency prevented most of the endothelial dysfunction. To examine potential underlying mechanisms, we performed bone marrow transplantation. WT mice reconstituted with SOCS3(+/-) bone marrow were protected from Ang II-induced endothelial dysfunction, whereas reconstitution of SOCS3(+/-) mice with WT bone marrow exacerbated Ang II-induced effects. The SOCS3 genotype of bone marrow-derived cells did not influence direct effects of Ang II on vascular function. These data provide new mechanistic insight into the influence of SOCS3 on the vasculature, including divergent effects depending on the source of Ang II. Bone marrow-derived cells deficient in SOCS3 protect against systemic Ang II-induced vascular dysfunction.


Assuntos
Angiotensina II , Aorta/metabolismo , Artéria Basilar/metabolismo , Células da Medula Óssea/metabolismo , Artérias Carótidas/metabolismo , Hipertensão/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Vasodilatação , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Artéria Basilar/efeitos dos fármacos , Artéria Basilar/fisiopatologia , Transplante de Medula Óssea , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Genótipo , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Técnicas de Cultura de Órgãos , Fenótipo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/deficiência , Proteína 3 Supressora da Sinalização de Citocinas/genética , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
19.
J Immunol ; 196(10): 4253-62, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084099

RESUMO

Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target Ags have conferred long-lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8(+) T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8(+) T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. In this article, we show that robust CD8(+) T cell responses of similar phenotype are mounted after prime-boost immunization against Plasmodium berghei glideosome-associated protein 5041-48-, sporozoite-specific protein 20318-325-, thrombospondin-related adhesion protein (TRAP) 130-138-, or circumsporozoite protein (CSP) 252-260-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8(+) T cells provide sterilizing immunity and reduce liver parasite burden after sporozoite challenge. Further, CD8(+) T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not intracellular glideosome-associated protein 50 and sporozoite-specific protein 20, efficiently recognize sporozoite-infected hepatocytes in vitro. These results suggest that: 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8(+) T cells to eliminate liver-stage Plasmodium infection; and 2) proteins expressed on the surface of sporozoites may be good target Ags for protective CD8(+) T cells.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Hepatócitos/imunologia , Hepatócitos/parasitologia , Esquemas de Imunização , Memória Imunológica , Fígado/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Vacinas de Subunidades Antigênicas/imunologia
20.
J Clin Invest ; 125(9): 3477-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26241055

RESUMO

Due to their ability to rapidly proliferate and produce effector cytokines, memory CD8+ T cells increase protection following reexposure to a pathogen. However, low inflammatory immunizations do not provide memory CD8+ T cells with a proliferation advantage over naive CD8+ T cells, suggesting that cell-extrinsic factors enhance memory CD8+ T cell proliferation in vivo. Herein, we demonstrate that inflammatory signals are critical for the rapid proliferation of memory CD8+ T cells following infection. Using murine models of viral infection and antigen exposure, we found that type I IFN-driven expression of IL-15 in response to viral infection prepares memory CD8+ T cells for rapid division independently of antigen reexposure by transiently inducing cell-cycle progression via a pathway dependent on mTOR complex-1 (mTORC1). Moreover, exposure to IL-15 allowed more rapid division of memory CD8+ T cells following antigen encounter and enhanced their protective capacity against viral infection. Together, these data reveal that inflammatory IL-15 promotes optimal responses by memory CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Divisão Celular/imunologia , Memória Imunológica , Interleucina-15/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Divisão Celular/genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interleucina-15/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...