Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579603

RESUMO

Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.


Assuntos
Cortactina , Proteínas Associadas à Distrofina , Camundongos Knockout , Junção Neuromuscular , Animais , Junção Neuromuscular/metabolismo , Cortactina/metabolismo , Cortactina/genética , Camundongos , Proteínas Associadas à Distrofina/metabolismo , Proteínas Associadas à Distrofina/genética , Músculo Esquelético/metabolismo , Humanos , Fosforilação
2.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769479

RESUMO

Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.


Assuntos
Junção Neuromuscular/metabolismo , Proteínas de Ligação a Fosfato/fisiologia , Podossomos/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/efeitos dos fármacos , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Podossomos/efeitos dos fármacos , Densidade Pós-Sináptica/efeitos dos fármacos , Densidade Pós-Sináptica/metabolismo , RNA Interferente Pequeno/farmacologia , Sinapses/efeitos dos fármacos
3.
Front Mol Neurosci ; 13: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587503

RESUMO

The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.

4.
Sci Rep ; 10(1): 4524, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161296

RESUMO

Motor neurons form specialized synapses with skeletal muscle fibers, called neuromuscular junctions (NMJs). Cultured myotubes are used as a simplified in vitro system to study the postsynaptic specialization of muscles. The stimulation of myotubes with the glycoprotein agrin or laminin-111 induces the clustering of postsynaptic machinery that contains acetylcholine receptors (AChRs). When myotubes are grown on laminin-coated surfaces, AChR clusters undergo developmental remodeling to form topologically complex structures that resemble mature NMJs. Needing further exploration are the molecular processes that govern AChR cluster assembly and its developmental maturation. Here, we describe an improved protocol for culturing muscle cells to promote the formation of complex AChR clusters. We screened various laminin isoforms and showed that laminin-221 was the most potent for inducing AChR clusters, whereas laminin-121, laminin-211, and laminin-221 afforded the highest percentages of topologically complex assemblies. Human primary myotubes that were formed by myoblasts obtained from patient biopsies also assembled AChR clusters that underwent remodeling in vitro. Collectively, these results demonstrate an advancement of culturing myotubes that can facilitate high-throughput screening for potential therapeutic targets for neuromuscular disorders.


Assuntos
Técnicas de Cultura de Células , Laminina , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Densidade Pós-Sináptica , Animais , Linhagem Celular , Células Cultivadas , Imunofluorescência , Laminina/química , Camundongos , Modelos Biológicos , Mioblastos/citologia , Mioblastos/fisiologia , Junção Neuromuscular , Receptores Colinérgicos/metabolismo
5.
Sci Rep ; 7(1): 9116, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831123

RESUMO

Neuromuscular junctions (NMJs) are specialized synapses that connect motor neurons to skeletal muscle fibers and orchestrate proper signal transmission from the nervous system to muscles. The efficient formation and maintenance of the postsynaptic machinery that contains acetylcholine receptors (AChR) are indispensable for proper NMJ function. Abnormalities in the organization of synaptic components often cause severe neuromuscular disorders, such as muscular dystrophy. The dystrophin-associated glycoprotein complex (DGC) was shown to play an important role in NMJ development. We recently identified liprin-α-1 as a novel binding partner for one of the cytoplasmic DGC components, α-dystrobrevin-1. In the present study, we performed a detailed analysis of localization and function of liprin-α-1 at the murine NMJ. We showed that liprin-α-1 localizes to both pre- and postsynaptic compartments at the NMJ, and its synaptic enrichment depends on the presence of the nerve. Using cultured muscle cells, we found that liprin-α-1 plays an important role in AChR clustering and the organization of cortical microtubules. Our studies provide novel insights into the function of liprin-α-1 at vertebrate neuromuscular synapses.


Assuntos
Junção Neuromuscular/metabolismo , Proteínas/metabolismo , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Expressão Gênica , Camundongos , Microtúbulos/metabolismo , Músculos/metabolismo , Transporte Proteico , Proteínas/genética , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...