Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511387

RESUMO

The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging.


Assuntos
Anti-Infecciosos , Poli-Hidroxialcanoatos , Embalagem de Alimentos/métodos , Antioxidantes/farmacologia , Floretina/farmacologia , Biopolímeros , Anti-Infecciosos/farmacologia
2.
N Biotechnol ; 76: 118-126, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257817

RESUMO

As a new generation of green solvents, deep eutectic solvents (DESs) are considered a promising alternative to current harsh organic solvents and find application in many chemical processing methods such as extraction and synthesis. DESs, normally formed by two or more components via various hydrogen bond interactions, offer high potential as medium for biocatalysis reactions where they can improve efficiency by enhancing substrate solubility and the activity and stability of the enzymes. In the current study, the stabilization of Humicola insolens cutinase (HiC) in natural deep eutectic solvents (NADESs) was assessed. The best hydrogen bond donor among sorbitol, xylitol, erythritol, glycerol and ethylene glycol, and the best acceptor among betaine, choline chloride, choline acetate, choline dihydrogen citrate and tetramethylammonium chloride, were selected, evaluating binding energies and molecular orientations through molecular docking simulations, and finally used to prepare NADES aqueous solutions. The effects of component ratio and NADES concentration on HiC thermostability at 90 °C were also investigated. The choline dihydrogen citrate:xylitol, in a 1:1 ratio with a 20 wt% concentration, was selected as the best combination in stabilizing HiC, increasing its half-life three-fold.


Assuntos
Solventes Eutéticos Profundos , Xilitol , Simulação de Acoplamento Molecular , Solventes/química , Colina/química , Citratos
3.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049907

RESUMO

Microalgal biomass represents a very interesting biological feedstock to be converted into several high-value products in a biorefinery approach. In this study, the cyanobacterium Synechocystis sp. PCC6803 was used to obtain different classes of molecules: proteins, carotenoids and lipids by using a cascade approach. In particular, the protein extract showed a selective cytotoxicity towards cancer cells, whereas carotenoids were found to be active as antioxidants both in vitro and on a cell-based model. Finally, for the first time, lipids were recovered from Synechocystis biomass as the last class of molecules and were successfully used as an alternative substrate for the production of polyhydroxyalkanoate (PHA) by the native PHA producer Pseudomonas resinovorans. Taken together, our results lead to a significant increase in the valorization of Synechocystis sp. PCC6803 biomass, thus allowing a possible offsetting of the process costs.


Assuntos
Poli-Hidroxialcanoatos , Synechocystis , Synechocystis/metabolismo , Poli-Hidroxialcanoatos/metabolismo
4.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557905

RESUMO

This study investigates the bioactive properties of different extracts of cardoon leaves in rescuing neuronal development arrest in an in vitro model of Rett syndrome (RTT). Samples were obtained from plants harvested at different maturity stages and extracted with two different methodologies, namely Naviglio® and supercritical carbon dioxide (scCO2). While scCO2 extracts more hydrophobic fractions, the Naviglio® method extracts phenolic compounds and less hydrophobic components. Only the scCO2 cardoon leaves extract obtained from plants harvested in spring induced a significant rescue of neuronal atrophy in RTT neurons, while the scCO2 extract from the autumn harvest stimulated dendrite outgrowth in Wild-Type (WT) neurons. The scCO2 extracts were the richest in squalene, 3ß-taraxerol and lupeol, with concentrations in autumn harvest doubling those in spring harvest. The Naviglio® extract was rich in cynaropicrin and exerted a toxic effect at 20 µM on both WT and RTT neurons. When cynaropicrin, squalene, lupeol and 3ß-taraxerol were tested individually, no positive effect was observed, whereas a significant neurotoxicity of cynaropicrin and lupeol was evident. In conclusion, cardoon leaves extracts with high content of hydrophobic bioactive molecules and low cynaropicrin and lupeol concentrations have pharmacological potential to stimulate neuronal development in RTT and WT neurons in vitro.


Assuntos
Cynara , Síndrome de Rett , Cynara/química , Esqualeno , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Bioresour Technol ; 363: 127954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108577

RESUMO

Cardoon, Cynara cardunculus L. represents a biorefinery crop with a great potential in the bioplastic field. This work investigates the valorization of different cardoon components into high added value products, finally recombined into novel upgraded bioplastics. Bioprocesses for Polyhydroxybutyrate (PHB) and medium-chain-length Polyhydroxyalkanoates (mcl-PHA) production were set up starting from root inulin and seed oil respectively, highlighting the effect of process conditions on polymer properties. The ternary blend, in which the PHB polymer matrix was added with mcl-PHA and epoxidized cardoon oil, evidenced a synergic effect of both additives in modulating PHB structural and thermal properties, promoted by the physical interaction occurring among the components. This proof-of concept frames the paper in the holistic approach of circular economy applied to bioplastic production.


Assuntos
Cynara , Poli-Hidroxialcanoatos , Biomassa , Biopolímeros , Inulina , Óleos de Plantas
6.
Polymers (Basel) ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012189

RESUMO

Plant-derived essential oils (EOs) represent a green alternative to conventional antimicrobial agents in food preservation. Due to their volatility and instability, their application is dependent on the development of efficient encapsulation strategies allowing their protection and release control. Encapsulation in Polyhydroxyalkanoate (PHA)-based nanoparticles (NPs) addresses this challenge, providing a biodegradable and biobased material whose delivery properties can be tuned by varying polymer composition. In this work, EO from Mexican oregano was efficiently encapsulated in Polyhydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-hydroxyhexanoate (PHB-HHx)-based NPs by solvent evaporation technique achieving high encapsulation efficiency, (>60%) and loading capacity, (about 50%). The obtained NPs displayed a regular distribution with a size range of 150-210 nm. In vitro release studies in food simulant media were fitted with the Korsmeyer-Peppas model, indicating diffusion as the main factor controlling the release. The cumulative release was affected by the polymer composition, possibly related to the more amorphous nature of the copolymer, as confirmed by WAXS and DSC analyses. Both the EO-loaded nanosystems displayed antimicrobial activity against Micrococcus luteus, with PHB-HHx-based NPs being even more effective than the pure EO. The results open the way to the effective exploitation of the developed nanosystems in active packaging.

7.
ACS Sustain Chem Eng ; 10(1): 572-581, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036179

RESUMO

In recent years, natural deep eutectic solvents (NADESs) have gained increasing attention as promising nontoxic solvents for biotechnological applications, due to their compatibility with enzymes and ability to enhance their activity. Betaine-based NADESs at a concentration of 25 wt % in a buffered aqueous solution were used as media to inhibit thermal inactivation of POXA1b laccase and its five variants when incubated at 70 and 90 °C. All the tested laccases showed higher residual activity when incubated in NADES solutions, with a further enhancement achieved also for the most thermostable variant. Furthermore, the residual activity of laccases in the presence of NADESs showed a clear advantage over the use of NADESs' individual components. Molecular docking simulations were performed to understand the role of NADESs in the stabilization of laccases toward thermal inactivation, evaluating the interaction between each enzyme and NADESs' individual components. A correlation within the binding energies between laccases and NADES components and the stabilization of the enzymes was demonstrated. These findings establish the possibility of preincubating enzymes in NADESs as a facile and cost-effective solution to inhibit thermal inactivation of enzymes when exposed to high temperatures. This computer-aided approach can assist the tailoring of NADES composition for every enzyme of interest.

8.
Chem Commun (Camb) ; 57(90): 11960-11963, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705002

RESUMO

We report a method of glycosylated enzymes' surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.

9.
Int J Biol Macromol ; 189: 494-502, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34428488

RESUMO

One of the major issues for the microbial production of polyhydroxyalkanoates (PHA) is to secure renewable, non-food biomass feedstocks to feed the fermentation process. Inulin, a polydisperse fructan that accumulates as reserve polysaccharide in the roots of several low-requirement crops, has the potential to face this challenge. In this work, a "substrate facilitator" microbial consortium was designed to address PHA production using inulin as feedstock. A microbial collection of Bacillus species was screened for efficient inulinase producer and the genome of the selected strain, RHF15, identified as Bacillus gibsonii, was analysed unravelling its wide catabolic potential. RHF15 was co-cultured with Cupriavidus necator, an established PHA producer, lacking the ability to metabolize inulin. A Central Composite Rotary Design (CCRD) was applied to optimise PHA synthesis from inulin by the designed artificial microbial consortium, assessing the impact of species inoculum ratio and inulin and N-source concentrations. In the optimized conditions, a maximum of 1.9 g L-1 of Polyhydroxybutyrate (PHB), corresponding to ~80% (gpolymer/gCDW) polymer content was achieved. The investigated approach represents an effective process optimization method, potentially applicable to the production of PHA from other complex C- sources.


Assuntos
Inulina/metabolismo , Consórcios Microbianos , Poli-Hidroxialcanoatos/metabolismo , Cupriavidus necator/metabolismo , Genoma Bacteriano , Glicosídeo Hidrolases/metabolismo , Cinética , Anotação de Sequência Molecular , Análise de Regressão
10.
Front Bioeng Biotechnol ; 9: 616908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732688

RESUMO

Inulin, a polydisperse fructan found as a common storage polysaccharide in the roots of several plants, represents a renewable non-food biomass resource for the synthesis of bio-based products. Exploitation of inulin-containing feedstocks requires the integration of different processes, including inulinase production, saccharification of inulin, and microbial fermentation for the conversion of released sugars into added-value products. In this work paper, a new microbial source of inulinase, Penicillium lanosocoeruleum, was identified through the screening of a fungal library. Inulinase production using inulin as C-source was optimized, reaching up to 28 U mL-1 at the 4th day of growth. The fungal inulinase mixture (PlaI) was characterized for pH and temperature stability and activity profile, and its isoenzymes composition was investigated by proteomic strategies. Statistical optimization of inulin hydrolysis was performed using a central composite rotatable design (CCRD), by analyzing the effect of four factors. In the optimized conditions (T, 45.5°C; pH, 5.1; substrate concentration, 60 g L-1; enzyme loading, 50 U gsubstrate -1), up to 96% inulin is converted in fructose within 20 h. The integration of PlaI in a process for polyhydroxyalkanoate (PHA) production by Cupriavidus necator from inulin was tested in both separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). A maximum of 3.2 g L-1 of PHB accumulation, corresponding to 82% polymer content, was achieved in the SSF. The proved efficiency in inulin hydrolysis and its effective integration into a SSF process pave the way to a profitable exploitation of the PlaI enzymatic mixture in inulin-based biorefineries.

11.
Front Bioeng Biotechnol ; 8: 619266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585417

RESUMO

The transition toward "green" alternatives to petroleum-based plastics is driven by the need for "drop-in" replacement materials able to combine characteristics of existing plastics with biodegradability and renewability features. Promising alternatives are the polyhydroxyalkanoates (PHAs), microbial biodegradable polyesters produced by a wide range of microorganisms as carbon, energy, and redox storage material, displaying properties very close to fossil-fuel-derived polyolefins. Among PHAs, polyhydroxybutyrate (PHB) is by far the most well-studied polymer. PHB is a thermoplastic polyester, with very narrow processability window, due to very low resistance to thermal degradation. Since the melting temperature of PHB is around 170-180°C, the processing temperature should be at least 180-190°C. The thermal degradation of PHB at these temperatures proceeds very quickly, causing a rapid decrease in its molecular weight. Moreover, due to its high crystallinity, PHB is stiff and brittle resulting in very poor mechanical properties with low extension at break, which limits its range of application. A further limit to the effective exploitation of these polymers is related to their production costs, which is mostly affected by the costs of the starting feedstocks. Since the first identification of PHB, researchers have faced these issues, and several strategies to improve the processability and reduce brittleness of this polymer have been developed. These approaches range from the in vivo synthesis of PHA copolymers, to the enhancement of post-synthesis PHB-based material performances, thus the addition of additives and plasticizers, acting on the crystallization process as well as on polymer glass transition temperature. In addition, reactive polymer blending with other bio-based polymers represents a versatile approach to modulate polymer properties while preserving its biodegradability. This review examines the state of the art of PHA processing, shedding light on the green and cost-effective tailored strategies aimed at modulating and optimizing polymer performances. Pioneering examples in this field will be examined, and prospects and challenges for their exploitation will be presented. Furthermore, since the establishment of a PHA-based industry passes through the designing of cost-competitive production processes, this review will inspect reported examples assessing this economic aspect, examining the most recent progresses toward process sustainability.

12.
Appl Microbiol Biotechnol ; 104(3): 915-924, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834437

RESUMO

Laccases bring exciting promises into the green industries, and the development of enzymes with improved properties is further raising their exploitation potential. Molecular engineering methods to build highly efficient catalysts both through rational and random mutagenesis were extensively applied. Moreover, computational approaches are becoming always more reliable in aiding proper design of efficient and tailored catalyst for specific applications. In this review, the results of the last 10 years about industrial application of engineered laccases in different fields are analyzed. Tailoring laccase towards a target substrate and defining a proper screening strategy for the selection of the "jackpot mutant" represent the keys of a winning mutagenesis pathway. Likewise, laccase chimerae, built by the fusion of laccases with relevant proteins, emerged as an added value in the designing of flexible and well-rounded biocatalysts. Despite being promising in most of the reported examples, evolved laccases are currently tested at a laboratory scale and a feedback from the industry world is continuously required to strengthen the biotechnological exploitation of these improved enzymes.


Assuntos
Biocatálise , Lacase/genética , Engenharia de Proteínas , Biologia Computacional , Microbiologia Industrial , Lacase/metabolismo , Mutagênese , Especificidade por Substrato
13.
Sci Rep ; 9(1): 13751, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551527

RESUMO

A sustainable bioprocess was developed for the valorization of a no/low value substrate, i.e. waste frying oils (WFOs) with high content of free fatty acids (FFAs), otherwise unsuitable for biodiesel production. The bioprocess was verified using both recombinant (Escherichia coli) and native (Pseudomonas resinovorans) polyhydroxyalkanoates (PHAs) producing cell factories. Microbial fermentation of WFOs provided a 2-fold advantage: i) the reduction of FFAs content resulting into an upgrading of the "exhausted waste oils" and ii) the production of a bio-based microbial polymer. Proper strain designing and process optimization allowed to achieve up to 1.5 g L-1 of medium chain length, mcl-PHAs, together with an efficient conversion (80% yield) of the treated WFO into biodiesel.

14.
Biotechnol Biofuels ; 12: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867680

RESUMO

BACKGROUND: Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractive for the production of second-generation biofuels as butanol through fermentation processes. RESULTS: This study reports the ability of two laccase preparations from Pleurotus ostreatus to delignify and detoxify milled brewer's spent grains (BSG). Up to 94% of phenols reduction was achieved. Moreover, thanks to the mild conditions of enzymatic pretreatment, the formation of other inhibitory compounds was avoided allowing to apply the sequential enzymatic pretreatment and hydrolysis process (no filtration and washing steps between the two phases). As expected, the high detoxification and delignification yields achieved by laccase pretreatment resulted in great saccharification. As a fact, no loss of carbohydrates was observed thanks to the novel sequential strategy, and thus the totality of polysaccharides was hydrolysed into fermentable sugars. The enzymatic hydrolysate was fermented to acetone-butanol-ethanol (ABE) by Clostridium acetobutilycum obtaining about 12.6 g/L ABE and 7.83 g/L butanol within 190 h. CONCLUSIONS: The applied sequential pretreatment and hydrolysis process resulted to be very effective for the milled BSG, allowing reduction of inhibitory compounds and lignin content with a consequent efficient saccharification. C. acetobutilycum was able to ferment the BSG hydrolysate with ABE yields similar to those obtained by using synthetic media. The proposed strategy reduces the amount of wastewater and the cost of the overall process. Based on the reported results, the potential production of butanol from the fermentation of BSG hydrolysate can be envisaged.

15.
Eng Life Sci ; 19(9): 631-642, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32625038

RESUMO

The green synthesis of highly conductive polyaniline by using two biological macromolecules, i.e laccase as biocatalyst, and DNA as template/dopant, was achieved in this work. Trametes versicolor laccase B (TvB) was found effective in oxidizing both aniline and its less toxic/mutagenic dimer N-phenyl-p-phenylenediamine (DANI) to conductive polyaniline. Reaction conditions for synthesis of conductive polyanilines were set-up, and structural and electrochemical properties of the two polymers were extensively investigated. When the less toxic aniline dimer was used as substrate, the polymerization reaction was faster and gave less-branched polymer. DNA was proven to work as hard template for both enzymatically synthesized polymers, conferring them a semi-ordered morphology. Moreover, DNA also acts as dopant leading to polymers with extraordinary conductive properties (∼6 S/cm). It can be envisaged that polymer properties are magnified by the concomitant action of DNA as template and dopant. Herein, the developed combination of laccase and DNA represents a breakthrough in the green synthesis of conductive materials.

16.
Bioresour Technol ; 265: 59-65, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29883847

RESUMO

Apple pomace, potato peels, and coffee silverskin are attractive agrofood wastes for the production of biofuels and chemicals, due to their abundance and carbohydrate content. As lignocellulosic biomasses, their conversion is challenged by the presence of lignin that prevents hydrolysis of polysaccharides, hence demanding a pretreatment step. In this work, the effectiveness of Pleurotus ostreatus laccases (with and without mediator) to remove lignin, improving the subsequent saccharification, was assessed. Optimized conditions for sequential protocol were set up for all agrofood wastes reaching delignification and detoxification yields correlated with high saccharification. Especially noteworthy were results for apple pomace and coffee silverskin for which 83% of and 73% saccharification yields were observed, by using laccase and laccase mediator system, respectively. The herein developed sequential protocol, saving soluble sugars and reducing the amount of wastewater, can improve the overall process for obtaining chemicals or fuels from agrofood wastes.


Assuntos
Biocombustíveis , Alimentos , Lacase/metabolismo , Eliminação de Resíduos , Biomassa , Hidrólise , Lignina
17.
PLoS One ; 12(9): e0185377, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945798

RESUMO

The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369), expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the "true lipase" family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Lipase/genética , Pleurotus/enzimologia , Pleurotus/genética , Animais , Carboxilesterase/química , Carboxilesterase/genética , Carboxilesterase/metabolismo , Domínio Catalítico , Corantes , Mineração de Dados , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Microbiologia Industrial , Cinética , Lipase/química , Lipase/metabolismo , Modelos Moleculares , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato ,
18.
J Biotechnol ; 259: 175-181, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28751274

RESUMO

Protein heterologous production offers viable opportunities to tailor laccase properties to specific industrial needs. The high redox potential laccase POXA1b from Pleurotus ostreatus was chosen as case study of marketable enzyme, due to its desirable properties in terms of activity/stability profile, and already assessed applicability. POXA1b was heterologously produced in Pichia pastoris by investigating the effect of inducible and constitutive expression systems on both the yield and the cost of its production. System performances were first assessed in shaken-flasks and then scaled-up in bioreactor. The production level obtained in the inducible system is 42U/mL, while the activity value achieved with the constitutive one is 60U/mL, the highest obtained in constitutive systems so far. The economic feasibility of recombinant laccase production was simulated, describing the case of an Italian small-medium enterprise. Two scenarios were evaluated: Scenario (I) production based on methanol inducible system; Scenario (II) production based on the constitutive system, fed with glycerol. At all the scales the glycerol-based fermentation is more economic than the methanol-based one. The price forecast for rPOXA1b production is 0.34€kU-1 for glycerol-based process, and is very competitive with the current price of commercial laccase.


Assuntos
Reatores Biológicos/microbiologia , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Proteínas Recombinantes/metabolismo , Biotecnologia/economia , Biotecnologia/métodos , Estudos de Viabilidade , Fermentação , Proteínas Fúngicas/genética , Lacase/genética , Pichia/genética , Pleurotus/enzimologia , Pleurotus/genética , Proteínas Recombinantes/genética
19.
Biomolecules ; 7(3)2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672843

RESUMO

Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.


Assuntos
Amiloide/química , Amiloide/metabolismo , Fungos/metabolismo , Sequência de Aminoácidos , Técnicas Biossensoriais , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia , Ligação Proteica , Propriedades de Superfície , Indústria Têxtil
20.
Biotechnol Adv ; 35(6): 815-831, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624475

RESUMO

Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.


Assuntos
Biotransformação , Lacase/química , Oxirredutases/química , Dinitrocresóis/química , Fungos/química , Fungos/enzimologia , Heme/química , Heme/genética , Lacase/genética , Lignina/química , Lignina/genética , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Peroxidases/química , Peroxidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...