Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166964

RESUMO

BACKGROUND: Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS: Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS: The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , RNA Polimerase II/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Transcrição Gênica
2.
Exp Cell Res ; 425(1): 113536, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858342

RESUMO

The neurotoxin MPP+ triggers cell death of dopamine neurons and induces Parkinson's disease symptoms in mice and men, but the immediate transcriptional response to this neurotoxin has not been studied. We therefore treated human SH-SY5Y cells with a low dose (0.1 mM) of MPP+ and measured the effect on nascent transcription by precision run-on sequencing (PRO-seq). We found that transcription of the mitochondrial genome was significantly reduced already after 30 min, whereas nuclear gene transcription was unaffected. Inhibition of respiratory complex I by MPP+ led to reduced ATP production, that may explain the diminished activity of mitochondrial RNA polymerase. Our results show that MPP+ has a direct effect on mitochondrial function and transcription, and that other gene expression or epigenetic changes induced by this neurotoxin are secondary effects that reflect a cellular adaptation program.


Assuntos
Neuroblastoma , Neurotoxinas , Humanos , Neurotoxinas/toxicidade , Neurotoxinas/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Neurônios/metabolismo , Neuroblastoma/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Apoptose
3.
Nucleic Acids Res ; 50(9): 5014-5028, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489065

RESUMO

The heterodimeric histone chaperone FACT, consisting of SSRP1 and SPT16, contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This suggests that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS of active genes.


Assuntos
Arabidopsis , Chaperonas de Histonas , Nucleossomos , Sítio de Iniciação de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fosforilação , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo
4.
J Mol Biol ; 430(17): 2747-2759, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29966609

RESUMO

Histone chaperones play critical roles in regulated structural transitions of chromatin in eukaryotic cells that involve nucleosome disassembly and reassembly. The histone chaperone FACT is a heterodimeric complex consisting in plants and metazoa of SSRP1/SPT16 and is involved in dynamic nucleosome reorganization during various DNA-dependent processes including transcription, replication and repair. The C-terminal HMG-box domain of the SSRP1 subunit mediates interactions with DNA and nucleosomes in vitro, but its relevance in vivo is unclear. Here, we demonstrate that Arabidopsis ssrp1-2 mutant plants express a C-terminally truncated SSRP1 protein. Although the structure of the truncated HMG-box domain is distinctly disturbed, it still exhibits residual DNA-binding activity, but has lost DNA-bending activity. Since ssrp1-2 plants are phenotypically affected but viable, the HMG-box domain may be functionally non-essential. To examine this possibility, SSRP1∆HMG completely lacking the HMG-box domain was studied. SSRP1∆HMG in vitro did not bind to DNA and its interactions with nucleosomes were severely reduced. Nevertheless, the protein showed a nuclear mobility and protein interactions similar to SSRP1. Interestingly, expression of SSRP1∆HMG is almost as efficient as that of full-length SSRP1 in supporting normal growth and development of the otherwise non-viable Arabidopsis ssrp1-1 mutant. SSRP1∆HMG is structurally similar to the fungal ortholog termed Pob3 that shares clear similarity with SSRP1, but it lacks the C-terminal HMG-box. Therefore, our findings indicate that the HMG-box domain conserved among SSRP1 proteins is not critical in Arabidopsis, and thus, the functionality of SSRP1/SPT16 in plants/metazoa and Pob3/Spt16 in fungi is perhaps more similar than anticipated.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Domínios HMG-Box , Chaperonas de Histonas/metabolismo , Nucleossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Nucleossomos/química , Nucleossomos/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Mol Biol ; 430(10): 1479-1494, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29588169

RESUMO

The conserved nuclear protein ENY2 (Sus1 in yeast) is involved in coupling transcription and mRNA export in yeast and metazoa, as it is a component both of the transcriptional co-activator complex SAGA and of the mRNA export complex TREX-2. Arabidopsis thaliana ENY2 is widely expressed in the plant and it localizes to the nucleoplasm, but unlike its yeast/metazoan orthologs, it is not enriched in the nuclear envelope. Affinity purification of ENY2 in combination with mass spectrometry revealed that it co-purified with SAGA components, but not with the nuclear pore-associated TREX-2. In addition, further targeted proteomics analyses by reciprocal tagging established the composition of the Arabidopsis SAGA complex consisting of the four modules HATm, SPTm, TAFm and DUBm, and that several SAGA subunits occur in alternative variants. While the HATm, SPTm and TAFm robustly co-purified with each other, the deubiquitination module (DUBm) appears to associate with the other SAGA modules more weakly/dynamically. Consistent with a homology model of the Arabidopsis DUBm, the SGF11 protein interacts directly with ENY2 and UBP22. Plants depleted in the DUBm components, SGF11 or ENY2, are phenotypically only mildly affected, but they contain increased levels of ubiquitinated histone H2B, indicating that the SAGA-DUBm has histone deubiquitination activity in plants. In addition to transcription-related proteins (i.e., transcript elongation factors, Mediator), many splicing factors were found to associate with SAGA, linking the SAGA complex and ongoing transcription with mRNA processing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Poro Nuclear/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Histonas/metabolismo , Espectrometria de Massas , Poro Nuclear/genética , Proteômica , Transativadores/genética , Ubiquitinação
6.
Plant Mol Biol ; 96(4-5): 367-374, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29332189

RESUMO

KEY MESSAGE: The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Vias Biossintéticas/genética , Genes de Plantas , Chaperonas de Histonas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos da radiação , Regulação para Cima/efeitos da radiação
7.
Methods Mol Biol ; 1629: 105-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28623582

RESUMO

A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Transcrição Gênica , Proteínas de Arabidopsis/isolamento & purificação , Sítios de Ligação , Imunoprecipitação da Cromatina , Cromatografia de Afinidade , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Ligação Proteica , Estatística como Assunto , Espectrometria de Massas em Tandem
8.
Plant Cell ; 29(4): 854-870, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28351991

RESUMO

Transcript elongation factors (TEFs) are a heterogeneous group of proteins that control the efficiency of transcript elongation of subsets of genes by RNA polymerase II (RNAPII) in the chromatin context. Using reciprocal tagging in combination with affinity purification and mass spectrometry, we demonstrate that in Arabidopsis thaliana, the TEFs SPT4/SPT5, SPT6, FACT, PAF1-C, and TFIIS copurified with each other and with elongating RNAPII, while P-TEFb was not among the interactors. Additionally, NAP1 histone chaperones, ATP-dependent chromatin remodeling factors, and some histone-modifying enzymes including Elongator were repeatedly found associated with TEFs. Analysis of double mutant plants defective in different combinations of TEFs revealed genetic interactions between genes encoding subunits of PAF1-C, FACT, and TFIIS, resulting in synergistic/epistatic effects on plant growth/development. Analysis of subnuclear localization, gene expression, and chromatin association did not provide evidence for an involvement of the TEFs in transcription by RNAPI (or RNAPIII). Proteomics analyses also revealed multiple interactions between the transcript elongation complex and factors involved in mRNA splicing and polyadenylation, including an association of PAF1-C with the polyadenylation factor CstF. Therefore, the RNAPII transcript elongation complex represents a platform for interactions among different TEFs, as well as for coordinating ongoing transcription with mRNA processing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteômica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Plant Mol Biol ; 93(3): 283-298, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28004241

RESUMO

KEY MESSAGE: We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Inflorescência/metabolismo , Inflorescência/ultraestrutura , Modelos Biológicos , Fenótipo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...