Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 294(1): C372-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18032528

RESUMO

Angiotensin II (ANG II) increases oxidative stress and is associated with increased risk of sudden cardiac death. The cardiac Na(+) channel promoter contains elements that confer redox sensitivity. We tested the hypothesis that ANG II-mediated oxidative stress may modulate Na(+) channel current through altering channel transcription. In H9c2 myocytes treated for 48 h with ANG II (100 nmol/l) or H(2)O(2) (10 micromol/l) showed delayed macroscopic inactivation, increased late current, and 59.6% and 53.8% reductions in Na(+) current, respectively (P < or = 0.01). By quantitative real-time RT-PCR, the cardiac Na(+) channel (scn5a) mRNA abundance declined by 47.3% (P < 0.01) in H9c2 myocytes treated for 48 h with 100 nmol/l ANG II. A similar change occurred with 20 micromol/l H(2)O(2) (46.9%, P < 0.01) after 48 h. Comparable effects were seen in acutely isolated ventricular myocytes. The effects of ANG II could be inhibited by prior treatment of H9c2 cells with scavengers of reactive oxygen species or an inhibitor of the NADPH oxidase. Mutation of the scn5a promoter NF-kappaB binding site prevented decreased activity in response to ANG II and H(2)O(2). Gel shift and chromosomal immunoprecipitation assays confirmed that nuclear factor (NF)-kappaB bound to the scn5a promoter in response to ANG II and H(2)O(2). Overexpression of the p50 subunit of NF-kappaB in H9c2 cells reduced scn5a mRNA (77.3%, P < 0.01). In conclusion, ANG II can decrease scn5a transcription and current. This effect appears to be through production of H(2)O(2) resulting in NF-kappaB binding to the Na(+) channel promoter.


Assuntos
Angiotensina II/metabolismo , Miócitos Cardíacos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Estresse Oxidativo , Canais de Sódio/metabolismo , Sódio/metabolismo , Transcrição Gênica , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Peróxido de Hidrogênio/metabolismo , Cinética , Potenciais da Membrana , Mutação , Miócitos Cardíacos/enzimologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/genética , Transfecção
2.
Circulation ; 116(20): 2260-8, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17967977

RESUMO

BACKGROUND: Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na+ channel SCN5A on chromosome 3p21 cause approximately 20% of the cases of Brugada syndrome; most mutations decrease inward Na+ current, some by preventing trafficking of the channels to the surface membrane. We previously used positional cloning to identify a new locus on chromosome 3p24 in a large family with Brugada syndrome and excluded SCN5A as a candidate gene. METHODS AND RESULTS: We used direct sequencing to identify a mutation (A280V) in a conserved amino acid of the glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) gene. The mutation was present in all affected individuals and absent in >500 control subjects. GPD1-L RNA and protein are abundant in the heart. Compared with wild-type GPD1-L, coexpression of A280V GPD1-L with SCN5A in HEK cells reduced inward Na+ currents by approximately 50% (P<0.005). Wild-type GPD1-L localized near the cell surface to a greater extent than A280V GPD1-L. Coexpression of A280V GPD1-L with SCN5A reduced SCN5A cell surface expression by 31+/-5% (P=0.01). CONCLUSIONS: GPD1-L is a novel gene that may affect trafficking of the cardiac Na+ channel to the cell surface. A GPD1-L mutation decreases SCN5A surface membrane expression, reduces inward Na+ current, and causes Brugada syndrome.


Assuntos
Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatologia , Glicerolfosfato Desidrogenase/genética , Proteínas Musculares/genética , Canais de Sódio/genética , Desidrogenase do Álcool de Açúcar/genética , Animais , Células COS , Chlorocebus aethiops , Cromossomos Humanos Par 3 , Saúde da Família , Feminino , Glicerolfosfato Desidrogenase/metabolismo , Coração/fisiologia , Humanos , Itália , Rim/citologia , Masculino , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Linhagem , Mutação Puntual , Sódio/metabolismo , Canais de Sódio/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Fibrilação Ventricular/genética , Fibrilação Ventricular/fisiopatologia
3.
Circ Res ; 101(11): 1146-54, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-17901361

RESUMO

Heart failure (HF) is associated with reduced cardiac Na+ channel (SCN5A) current. We hypothesized that abnormal transcriptional regulation of this ion channel during HF could help explain the reduced current. Using human hearts explanted at the transplantation, we have identified 3 human C-terminal SCN5A mRNA splicing variants predicted to result in truncated, nonfunctional channels. As compared with normal hearts, the explanted ventricles showed an upregulation of 2 of the variants and a downregulation of the full-length mRNA transcript such that the E28A transcript represented only 48.5% (P<0.01) of the total SCN5A mRNA. This correlated with a 62.8% (P<0.01) reduction in Na+ channel protein. Lymphoblasts and skeletal muscle expressing SCN5A also showed identical C-terminal splicing variants. Variants showed reduced membrane protein and no functional current. Transfection of truncation variants into a cell line stably transfected with the full-length Na+ channel resulted in dose-dependent reductions in channel mRNA and current. Introduction of a premature truncation in the C-terminal region in a single allele of the mouse SCN5A resulted in embryonic lethality. Embryonic stem cell-derived cardiomyocytes expressing the construct showed reductions in Na+ channel-dependent electrophysiological parameters, suggesting that the presence of truncated Na+ channel mRNA at levels seen in HF is likely to be physiologically significant. In summary, chronic HF was associated with an increase in 2 truncated SCN5A variants and a decrease in the native mRNA. These splice variations may help explain a loss of Na+ channel protein and may contribute to the increased arrhythmic risk in clinical HF.


Assuntos
Processamento Alternativo , Insuficiência Cardíaca/genética , Canais de Sódio/genética , Animais , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Variação Genética , Coração , Insuficiência Cardíaca/etiologia , Humanos , Técnicas In Vitro , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5 , RNA Mensageiro/genética , Taxa de Sobrevida , Transfecção
4.
Heart Rhythm ; 4(1): 46-53, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17198989

RESUMO

BACKGROUND: Brugada and long QT type 3 syndromes are linked to sodium channel mutations and clinically cause arrhythmias that lead to sudden death. We have identified a novel threonine-to-isoleucine missense mutation at position 353 (T353I) adjacent to the pore-lining region of domain I of the cardiac sodium channel (SCN5A) in a family with Brugada syndrome. Both male and female carriers are symptomatic at young ages, have typical Brugada-type electrocardiogram changes, and have relatively normal corrected QT intervals. OBJECTIVES: To characterize the properties of the newly identified cardiac sodium channel (SCN5A) mutation at the cellular level. RESULTS: Using whole-cell voltage clamp, we found that heterologous expression of SCN5A containing the T353I mutation resulted in 74% +/- 6% less peak macroscopic sodium current when compared with wild-type channels. A construct of the T353I mutant channel fused with green fluorescent protein failed to traffic properly to the sarcolemma, with a large proportion of channels sequestered intracellularly. Overnight exposure to 0.1 mM mexiletine, a Na(+) channel blocking agent, increased T353I channel trafficking to the membrane to near normal levels, but the mutant channels showed a significant late current that was 1.6% +/- 0.2% of peak sodium current at 200 ms, a finding seen with long QT mutations. CONCLUSIONS: The clinical presentation of patients carrying the T353I mutation is that of Brugada syndrome and could be explained by a cardiac Na(+) channel trafficking defect. However, when the defect was ameliorated, the mutated channels had biophysical properties consistent with long QT syndrome. The lack of phenotypic changes associated with the long QT syndrome could be explained by a T353I-induced trafficking defect reducing the number of mutant channels with persistent currents present at the sarcolemma.


Assuntos
Síndrome de Brugada/genética , Sistema de Condução Cardíaco/patologia , Síndrome do QT Longo/genética , Proteínas Musculares/genética , Mutação de Sentido Incorreto/genética , Canais de Sódio/genética , Potenciais de Ação , Adulto , Células Cultivadas , Criança , Simulação por Computador , Análise Mutacional de DNA , Eletrocardiografia , Saúde da Família , Feminino , Sistema de Condução Cardíaco/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
5.
Methods Mol Biol ; 330: 221-31, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16846027

RESUMO

By directed differentiation using the hanging drop method, cardiomyocytes (CMs) can be derived from mouse embryonic stem cells. These spontaneously active CMs can then be isolated from the embryoid bodies and studied electrophysiologically for analysis of arrhythmic potential. This method is particularly advantangeous for studying CMs derived from genetically modified stem cells, in which mutations result in embryonic lethality.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Técnicas de Cultura de Células , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Camundongos , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Células-Tronco/citologia , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...