Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36646308

RESUMO

Ruminant species differ in digestive physiology. The species-specific ratio of mean retention time of particles and fluid (MRTparticle/MRTfluid) in the reticulorumen has been interpreted as controlling ruminal fermentation: a higher ratio indicates of a more distinct 'washing' of particulate digesta by liquid. This should increase the harvest of microbes from the reticulorumen, and keep the microbiome in a state of more intense growth; at the same time, this should increase the metabolic losses of faecal nitrogen of microbial origin, leading to lower values for the apparent digestibility of crude protein (aD CP). A systematic difference has been hypothesized between cattle (higher ratio) and sheep (lower ratio), with a lower MRTfluid in cattle due to a higher saliva production. Here, we test these hypotheses in a meta-analysis, using only studies that investigated cattle and sheep simultaneously. The datasets included 12 studies on MRT (of which 11 contained information on feed intake), yielding 102 (or 89) individual data; and 26 studies on protein digestibility (of which 18 contained information on intake), yielding 349 individual data. Cattle had a higher MRTparticle/MRTfluid (2.1) than sheep (1.7), mainly due to longer MRTparticle; only if body mass was included in the model, MRTfluid was significantly shorter in cattle in the larger MRT dataset (and tended to be shorter in the slightly smaller dataset). Cattle had a significantly lower aD CP than sheep, while there was no such difference in overall (dry or organic matter) digestibility. The dataset confirms a shift in fermentation strategy towards microbial production in cattle. While this has been suggested for ruminants in general, cattle appear particularly far on an evolutionary trajectory of maximizing microbial yield from the forestomach. The application of more specific digestive physiology data (like endogenous losses) gained from sheep to cattle should be done bearing these differences in mind.


Assuntos
Ingestão de Alimentos , Ruminantes , Bovinos , Ovinos , Animais , Fermentação , Fezes , Ruminantes/metabolismo , Proteínas/metabolismo , Digestão/fisiologia , Rúmen/fisiologia , Ração Animal/análise , Dieta/veterinária
2.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1739-1746, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31538689

RESUMO

The aim of this study was to investigate the microbial protein yield of different pure carbohydrates to contribute to a more precise prediction of the microbial protein formed in the rumen. In a first experiment, sucrose, wheat starch, microcrystalline cellulose and citrus pectin were incubated for 8 and 24 hr in the modified Hohenheim gas test (HGT) system (3 runs × 2 syringes) including gas production, ammonia and short-chain fatty acid concentration measurements. Ammonia values were used for estimation of the microbial protein formation. In a second experiment, the same substrates were incubated for 96 hr in the HGT system (2 runs × 3 syringes) and gas production was measured after 2, 4, 6, 8, 12, 16, 24, 30, 36, 48, 60, 72 and 96 hr of incubation to obtain the fermentation kinetics and the time of half-maximal gas production (t1/2 ) of the substrates. The substrates differed considerably in their fermentation kinetics, and therefore, comparison on the basis of t1/2 was chosen as the most meaningful. At t1/2 , microbial protein yield [g/kg dry matter] was higher for cellulose than for sucrose and pectin and higher for starch than for sucrose. The microbial protein expressed in g/L gas production was higher for starch and cellulose than for sucrose and pectin at t1/2 . Effects of carbohydrates related to ruminal pH may remain undetected in in vitro trials.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Carboidratos/química , Carboidratos/classificação , Proteínas/metabolismo , Animais , Metabolismo dos Carboidratos , Bovinos , Digestão/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...