Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Arch Allergy Immunol ; 183(9): 1007-1016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584611

RESUMO

BACKGROUND: Exposure to fungal allergens poses a serious threat to human health, especially to mould-allergic individuals. The prevalence of fungal allergic disease is increasing globally but is poorly studied in Africa. Here, we aimed to identify and characterize fungal proteins that were immunoreactive against serum samples from fungal-sensitized Zimbabweans from Shamva district to inform the development of diagnostics and therapeutics. METHODS: Crude protein extracts of the Ascomycota Aspergillus fumigatus, Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Penicillium chrysogenum, and Saccharomyces cerevisiae as well as mucoromycota Rhizopus nigricans were individually separated by one-dimensional gel electrophoresis for protein staining and immunoblotting. A pool of eight sera from fungi-sensitive Zimbabwean children aged 3-5 years was used to screen the crude extracts to determine their immunoreactivity. Protein bands recognized by the sera were subjected to mass spectrometry to identify the individual proteins reactive with the sera. RESULTS: The pooled serum sample reacted with 20 bands, which resolved to 34 distinct proteins, most of which were novel immunogens. The pool was most reactive to A. alternata. The proteins identified included peptidases (8/34), hydrolases (6/34), oxidoreductases (5/34), and glucosidases (4/34), while 11/34 were unknown. Eight of the proteins were predicted to be allergens using the Structural Database of Allergenic Proteins (SDAP). CONCLUSIONS: We identified novel immunogens from fungi expanding the number of known fungal allergens. These form a potential basis for diagnostics specific for the Zimbabwean population. Validation assays will now need to be carried out to further evaluate the cross-reactivity of the identified allergen candidates as well as investigate their potential recognition in a larger cohort of patients. Furthermore, there is now a need to conduct studies relating sensitization to these immunogens and clinical diseases in the population.


Assuntos
Proteínas Fúngicas , Hipersensibilidade , Alérgenos , Antígenos de Fungos , Criança , Fungos , Humanos , Imunoglobulina E , Zimbábue/epidemiologia
2.
Curr Res Microb Sci ; 2: 100082, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35028627

RESUMO

BACKGROUND: The prevalence of allergic diseases has increased over the last few decades, with sensitisation to fungal allergens and gut microbiome dysbiosis implicated in this trend. The fungal community in the gut (mycobiome) has yet to be characterised and related to fungal allergic sensitisation. Thus, we characterised the gut mycobiome and related it to fungal sensitisation and seroreactivity among Zimbabwean children. We further determined the effect of host age, sex, Schistosoma haematobium infection and mycobiome composition on fungal sensitisation and seroreactivity. METHODS: Using shotgun metagenomic sequencing, we characterised the gut microbiome of stool samples of 116 preschool aged children (PSAC) (≤5 years old, 57(49.1%) male and 59 (50.9%) female). Sensitisation to common fungi in Zimbabwe was assessed using skin prick tests (SPTs). Allergen-specific IgM, IgA, IgG, IgE and IgG4 antibodies were quantified by ELISA. We analysed the relationship between fungal genera and SPT reactivity by ANOVA; fungal genera and IgE antibody reactivity by linear regression; variation in mycobiome abundance with host and environmental factors by PERMANOVA; SPT reactivity and host and environmental factors by logistic regression; seroreactivity and host and environmental factors by ANOVA. RESULTS: The mycobiome formed <1% of the sequenced gut microbiome and 228 fungal genera were identified. The most abundant genera detected were Protomyces, Taphrina, and Aspergillus. S.haematobium infection had a significant effect on fungal genera. Prevalence of SPT sensitisation to ≥1 fungal species was 96%, and individuals were frequently sensitised to Saccharomyces cerevisiae. Antibodies were detected in 100% of the population. There was no relationship between mycobiome abundance and IgE titres or IgE/IgG4 ratios for each fungal species; no significant differences between SPT reactivity and abundance of fungal species except for S. cerevisiae; and fungal seroreactivity did not significantly differ with age. There were some sex (m>f for, Epicoccum nigrum and Penicillium chrysogenum) and SPT reactivity -related differences in seroreactivity. CONCLUSION: This is the first comprehensive characterisation of gut mycobiome and fungal allergic sensitisation of rural children in Zimbabwe. Although reported allergic disease is low there is a high percentage of sensitisation. Further studies with larger populations are required to understand the role of the mycobiome in allergic diseases.

3.
Int Arch Allergy Immunol ; 181(4): 257-269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32069461

RESUMO

The prevalence of allergic diseases in the African continent has received limited attention with the allergic diseases due to fungal allergens being among the least studied. This lead to the opinion being that the prevalence of allergic disease is low in Africa. Recent reports from different African countries indicate that this is not the case as allergic conditions are common and some; particularly those due to fungal allergens are increasing in prevalence. Thus, there is need to understand both the aetiology and pathogenies of these diseases, particularly the neglected fungal allergic diseases. This review addresses currently available knowledge of fungal-induced allergy, disease pathogenesis comparing findings from human versus experimental mouse studies of fungal allergy. The review discusses the potential role of the gut mycobiome and the extent to which this is relevant to fungal allergy, diagnosis and human health.


Assuntos
Alérgenos/imunologia , Fungos/imunologia , Micoses/imunologia , África , Animais , Antígenos de Fungos/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Micoses/microbiologia
4.
BMJ Glob Health ; 3(2): e000661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616147

RESUMO

BACKGROUND: Recent research has shown that in schistosome-endemic areas preschool-aged children (PSAC), that is, ≤5 years, are at risk of infection. However, there exists a knowledge gap on the dynamics of infection and morbidity in this age group. In this study, we determined the incidence and dynamics of the first urogenital schistosome infections, morbidity and treatment in PSAC. METHODS: Children (6 months to 5 years) were recruited and followed up for 12 months. Baseline demographics, anthropometric and parasitology data were collected from 1502 children. Urinary morbidity was assessed by haematuria and growth-related morbidity was assessed using standard WHO anthropometric indices. Children negative for Schistosoma haematobium infection were followed up quarterly to determine infection and morbidity incidence. RESULTS: At baseline, the prevalence of S haematobium infection and microhaematuria was 8.5% and 8.6%, respectively. Based on different anthropometric indices, 2.2%-8.2% of children were malnourished, 10.1% underweight and 18.0% stunted. The fraction of morbidity attributable to schistosome infection was 92% for microhaematuria, 38% for stunting and malnutrition at 9%-34%, depending on indices used. S haematobium-positive children were at greater odds of presenting with microhaematuria (adjusted OR (AOR)=25.6; 95% CI 14.5 to 45.1) and stunting (AOR=1.7; 95% CI 1.1 to 2.7). Annual incidence of S haematobium infection and microhaematuria was 17.4% and 20.4%, respectively. Microhaematuria occurred within 3 months of first infection and resolved in a significant number of children, 12 weeks post-praziquantel treatment, from 42.3% to 10.3%; P<0.001. CONCLUSION: We demonstrated for the first time the incidence of schistosome infection in PSAC, along with microhaematuria, which appears within 3 months of first infection and resolves after praziquantel treatment. A proportion of stunting and malnutrition is attributable to S haematobium infection. The study adds scientific evidence to the calls for inclusion of PSAC in schistosome control programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...