Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 48(1): 13-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130617

RESUMO

BACKGROUND: Subsets of patients with severe asthma remain symptomatic despite prolonged, high-dose glucocorticoid therapy. We hypothesized that the clinical glucocorticoid sensitivity of these asthmatics is reflected in differences in peripheral blood dendritic cell subsets. OBJECTIVE: To compare peripheral blood leucocyte populations using flow cytometry at baseline and after 2 weeks of systemic glucocorticoid (steroid) treatment to identify immunological differences between steroid-sensitive (SS) and steroid-resistant (SR) asthmatics. METHODS: Adult severe asthmatics (SS n = 12; SR n = 23) were assessed for their response to 2 weeks of therapy with oral prednisolone. Peripheral blood was obtained before and after therapy and stained for lymphocyte (CD3, CD19, CD4, CD8 and Foxp3) and dendritic cell markers (Lineage negative [CD3, CD14, CD16, CD19, CD20, CD56], HLA-DR+, CD304, CD11c, ILT3 and CD86). RESULTS: A higher median frequency of myeloid DCs (mDCs) but not plasmacytoid DCs (pDCs) was observed in the blood of SR as compared to SS asthmatics (P = .03). Glucocorticoid therapy significantly increased median B cell, but not T cell numbers in both cohorts, with a trend for increased numbers of Foxp3+ Tregs in SS (P = .07), but not SR subjects. Oral prednisolone therapy significantly reduced the median numbers and frequencies of total DCs and pDCs in both SS and SR asthmatics. Interestingly, the expression of HLA-DR and ILT3 was also reduced on pDCs in all patients. In contrast, therapy increased the median frequency of mDCs in SS, but reduced it in SR asthmatics. CONCLUSIONS: Myeloid DC frequency is elevated in SR compared with SS asthmatics, and mDC shows a differential response to oral prednisolone therapy.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/imunologia , Glucocorticoides/administração & dosagem , Prednisolona/administração & dosagem , Linfócitos T/imunologia , Administração Oral , Adulto , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Células Dendríticas/patologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Linfócitos T/patologia
3.
Bioresour Technol ; 97(6): 809-18, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15990288

RESUMO

On-farm production of arbuscular mycorrhizal (AM) fungus inoculum can reduce the cost of the inoculum and increase utilization of this symbiosis in plant production. Bahiagrass (Paspalum notatum Flugge) seedlings, colonized by AM fungi, were transplanted into raised bed enclosures. Media within the enclosures was vermiculite mixed with either field soil or yard clippings compost in Experiment I and vermiculite mixed with yard clippings compost or dairy manure/leaf compost in Experiment II. Compost and vermiculite mixtures yielded more propagules of AM fungi than soil-based mixtures in Experiment I. Growth of plants in a 1:4 (v/v) mixture of yard clippings compost and vermiculite produced more inoculum (503 propagules cm(-3)) than growth in 1:9 and 1:99 (v/v) mixtures (240 and 42 propagules cm(-3), respectively). Water, inorganic nutrient solution minus P, and fish protein digest were added to inoculum production enclosures in Experiment II. Results indicated that supplemental nutrient addition was unnecessary. This method produces a concentrated inoculum of AM fungi in a form readily used as an amendment to horticultural potting media for the production of vegetable seedlings.


Assuntos
Agricultura/métodos , Micorrizas/fisiologia , Microbiologia do Solo , Microbiologia Industrial/métodos , Paspalum/microbiologia , Solo
4.
New Phytol ; 168(3): 687-96, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313650

RESUMO

Nitrogen (N) is known to be transferred from fungus to plant in the arbuscular mycorrhizal (AM) symbiosis, yet its metabolism, storage and transport are poorly understood. In vitro mycorrhizas of Glomus intra-radices and Ri T-DNA-transformed carrot roots were grown in two-compartment Petri dishes. (15)N- and/or (13)C-labeled substrates were supplied to either the fungal compartment or to separate dishes containing uncolonized roots. The levels and labeling of free amino acids (AAs) in the extra-radical mycelium (ERM) in mycorrhizal roots and in uncolonized roots were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Arginine (Arg) was the predominant free AA in the ERM, and almost all Arg molecules became labeled within 3 wk of supplying (15)NH(4) (+) to the fungal compartment. Labeling in Arg represented > 90% of the total (15)N in the free AAs of the ERM. [Guanido-2-(15)N]Arg taken up by the ERM and transported to the intra-radical mycelium (IRM) gave rise to (15)N-labeled AAs. [U-(13)C]Arg added to the fungal compartment did not produce any (13)C labeling of other AAs in the mycorrhizal root. Arg is the major form of N synthesized and stored in the ERM and transported to the IRM. However, NH(4) (+) is the most likely form of N transferred to host cells following its generation from Arg breakdown.


Assuntos
Daucus carota/microbiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Simbiose
5.
J Cyst Fibros ; 2(2): 61-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15463851

RESUMO

Increasing numbers of cystic fibrosis (CF) patients are surviving into adulthood. An understanding of the psychiatric and psychosocial aspects of CF in adults and adolescents is therefore more important than ever. There is a large body of evidence indicating that the psychological and psychosocial functioning of people with CF is similar to that of well people, until the disease becomes severe. However, there is also evidence that patients do suffer an increased likelihood of psychiatric problems, such as depression, and of scoring poorly on physical functioning measures of quality of life. Studies have found conflicting evidence as to any association between degree of respiratory impairment and psychological functioning. Coping styles seem to have a large effect upon the quality of life of CF patients. People with cystic fibrosis can have problems with sexuality, platonic relationships and independence. Families of patients also suffer problems, which can affect the patients themselves. Non-compliance is a complicated problem with many patients. New treatments for people with CF are emerging, such as lobe transplants from live donors and gene therapy, with possible new psychosocial problems resulting. Furthermore, older studies are becoming increasingly inapplicable as treatment and prognosis changes. Therefore, more research is needed in this field.


Assuntos
Fibrose Cística/psicologia , Transtornos Mentais , Saúde Mental , Atividades Cotidianas , Adaptação Psicológica , Adolescente , Adulto , Fatores Etários , Atitude Frente a Saúde , Fibrose Cística/complicações , Fibrose Cística/terapia , Família/psicologia , Fertilidade , Nível de Saúde , Humanos , Relações Interpessoais , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Psicologia do Adolescente , Qualidade de Vida , Fatores de Risco , Fatores Sexuais , Comportamento Sexual , Comportamento Social , Apoio Social , Sobreviventes/psicologia
6.
Plant Physiol ; 127(3): 1287-98, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11706207

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of (13)C labeling of germinating spores and extraradical mycelium with (13)C(2)-acetate and (13)C(2)-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle.


Assuntos
Carbono/metabolismo , Fungos/fisiologia , Glioxilatos/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Radioisótopos de Carbono , Etiquetas de Sequências Expressas , Fungos/genética , Fungos/ultraestrutura , Regulação Fúngica da Expressão Gênica , Glicerol/farmacologia , Glioxissomos/genética , Glioxissomos/metabolismo , Glioxissomos/ultraestrutura , Hifas/genética , Hifas/fisiologia , Hifas/ultraestrutura , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fotossíntese , Alinhamento de Sequência , Solo , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura , Simbiose
8.
Plant Physiol ; 121(1): 263-72, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10482682

RESUMO

Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of over 80% of plants in all terrestrial environments. Understanding why AM fungi do not complete their life cycle under free-living conditions has significant implications for the management of one of the world's most important symbioses. We used (13)C-labeled substrates and nuclear magnetic resonance spectroscopy to study carbon fluxes during spore germination and the metabolic pathways by which these fluxes occur in the AM fungus Glomus intraradices. Our results indicate that during asymbiotic growth: (a) sugars are made from stored lipids; (b) trehalose (but not lipid) is synthesized as well as degraded; (c) glucose and fructose, but not mannitol, can be taken up and utilized; (d) dark fixation of CO(2) is substantial; and (e) arginine and other amino acids are synthesized. The labeling patterns are consistent with significant carbon fluxes through gluconeogenesis, the glyoxylate cycle, the tricarboxylic acid cycle, glycolysis, non-photosynthetic one-carbon metabolism, the pentose phosphate pathway, and most or all of the urea cycle. We also report the presence of an unidentified betaine-like compound. Carbon metabolism during asymbiotic growth has features in between those presented by intraradical and extraradical hyphae in the symbiotic state.


Assuntos
Carbono/metabolismo , Fungos/metabolismo , Aminoácidos/biossíntese , Betaína/metabolismo , Dióxido de Carbono/metabolismo , Escuridão , Fungos/crescimento & desenvolvimento , Hexoses/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Manitol/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Simbiose , Fatores de Tempo , Trealose/metabolismo
9.
Plant Physiol ; 119(3): 1057-64, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10069844

RESUMO

The cyclic beta-(1-->3),beta-(1-->6)-D-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize beta-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic beta-glucan lacking beta-(1-->6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1-->3)-beta-D-glucosyl, a cyclic beta-(1-->3)-linked decasaccharide in which one of the residues is substituted in the 6 position with beta-laminaribiose. Cyclodecakis-(1-->3)-beta-D-glucosyl did not suppress the fungal beta-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic beta-(1-->3),beta-(1-->6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic beta-glucans may function as suppressors of a host defense response.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Glucanos/biossíntese , Simbiose/genética , Simbiose/fisiologia , Sequência de Carboidratos , Genes Bacterianos , Glucanos/química , Dados de Sequência Molecular , Mutação , Glycine max/microbiologia
10.
Carbohydr Res ; 296: 23-37, 1996 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-9008841

RESUMO

A unique glucan has been isolated from a recombinant strain of a Rhizobium meliloti TY7, a cyclic beta-(1-->2) glucan mutant carrying a locus specifying beta-(1-->3; 1-->6) glucan synthesis from Bradyrhizobium japonicum USDA110. This compound, which appears to have considerable hydrophobic affinity, was separated from a perchloric acid cell extract by adsorption to a C-18 silica column. Unlike those cyclic glucans previously isolated from Rhizobium meliloti or Bradyrhizobium japonicum, this molecule contains neither phosphoglycerol nor phosphocholine substituents, respectively. 2D NMR, FAB mass spectrometric analysis and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) confirmed that this glucan is a single, cyclic decasaccharide (cyclolaminarinose) in which one of the residues is substituted in its 6-position with beta-laminarabiose. This structural assignment was confirmed by mass spectral and NMR analyses of the product obtained from two consecutive Smith degradations. Unlike the complex 13C spectrum of the unoxidized material, the spectrum of this product consisted of only six resonances due to rapid time averaging of its symmetrical structure on the relatively slow NMR timescale. Synthesis of this newly described cyclic beta-glucan in the R. meliloti ndvB mutant restored the symbiotic and hypoosmotic adaptation characteristics of the R. meliloti wild type strain.


Assuntos
Glucanos/química , Sinorhizobium meliloti/química , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Oligossacarídeos/química
11.
Anal Biochem ; 243(1): 110-8, 1996 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-8954532

RESUMO

Limits of sensitivity and spectral resolution currently restrict the application of nuclear magnetic resonance (NMR) spectroscopy in plant metabolism. This study shows that these limits can be substantially expanded through the application of heteronuclear single- and multiple-quantum two-dimensional (2D) spectroscopic methods using pulsed field gradients both in vivo and in extracts. The course of metabolism in approximately 0.2 g of maize (Zea mays L.) root tips labeled with [1-13C]glucose was followed with 1 min time resolution using heteronuclear multiple quantum coherence (HMQC) 13C-1H spectroscopy in vivo. The timing of alanine, lactate, and ethanol synthesis was followed during the transition from normal to hypoxic conditions. In extracts of labeled maize root tips, 13C-1H heteronuclear single quantum coherence and heteronuclear multiple quantum coherence (HMBC) spectra acquired in 2-3 h allowed the detection and assignment of resonance that are not seen in one-dimensional (1D) 13C NMR spectra of the same samples taken in 12 h. In root tips labeled with 15NH4+, 15N-(1)H HMQC spectra in vivo showed labeling in the amide of glutamine. In extracts, 15N labeling in amines and amides was detected using 15N-1H HMBC spectra that is not seen in 1D 15N spectra of the same sample.


Assuntos
Plantas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Zea mays/metabolismo
12.
Plant Physiol ; 108(1): 7-15, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-12228450

RESUMO

Vesicular-arbuscular mycorrhizal fungi are symbionts for a large variety of crop plants; however, the form in which they take up carbon from the host is not established. To trace the course of carbon metabolism, we have used nuclear magnetic resonance spectroscopy with [13C]glucose labeling in vivo and in extracts to examine leek (Allium porrum) roots colonized by Glomus etunicatum (and uncolonized controls) as well as germinating spores. These studies implicate glucose as a likely substrate for vesicular-arbuscular mycorrhizal fungi in the symbiotic state. Root feeding of 0.6 mM 1-[13C]glucose labeled only the fungal metabolites trehalose and glycogen. The time course of this labeling was dependent on the status of the host. Incubation with 50 mM 1-[13C]glucose caused labeling of sucrose (in addition to fungal metabolites) with twice as much labeling in uncolonized plants. There was no detectable scrambling of the label from C1 glucose to the C6 position of glucose moieties in trehalose or glycogen. Labeling of mannitol C1,6 in the colonized root tissue was much less than in axenically germinating spores. Thus, carbohydrate metabolism of host and fungus are significantly altered in the symbiotic state.

13.
Appl Environ Microbiol ; 60(6): 2137-46, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8031100

RESUMO

A phosphocholine-substituted beta-1,3;1,6 cyclic glucan (PCCG), an unusual cyclic oligosaccharide, has been isolated from Bradyrhizobium japonicum USDA 110 (D. B. Rolin, P. E. Pfeffer, S. F. Osman, B. S. Swergold, F. Kappler, and A. J. Benesi, Biochim. Biophys. Acta 1116:215-225, 1992). Data presented here suggest that PCCG synthesis is dependent on the carbon metabolism and that osmotic regulation of its biosynthesis parallels regulation of membrane-derived oligosaccharide biosynthesis observed in Escherichia coli (E. P. Kennedy, M. K. Rumley, H. Schulman, and L. M. G. van Golde, J. Biol. Chem. 251:4208-4213, 1976) and Agrobacterium tumefaciens (G. A. Cangelosi, G. Martinetti, and E. W. Nester, J. Bacteriol. 172:2172-2174, 1990). Growth of B. japonicum USDA 110 cells in the reference medium at relatively low osmotic pressures (LO) (65 mosmol/kg of H2O) caused a large accumulation of PCCG and unsubstituted beta-1,3;1,6 cyclic glucans (CG). Sucrose and polyethylene glycol, nonionic osmotica, reduce all growth rates and inhibit almost completely the production of PCCG at high osmotic pressures (HO) above 650 and 400 mosmol/kg of H2O), respectively. We used in vivo 13C nuclear magnetic resonance spectroscopy to identify the active osmolytes implicated in the osmoregulation process. The level of alpha,alpha-trehalose in B. japonicum cells grown in autoclaved or filter-sterilized solutions remained constant in HO (0.3 M sucrose or 250 g of polyethylene glycol 6000 per liter) medium. Significant amounts of glycogen and extracellular polysaccharides were produced only when glucose was present in the autoclaved HO 0.3 M sucrose media. The results of hypo- and hyperosmotic shocking of B. japonicum USDA 110 cells were monitored by using in vivo 31P and 13C nuclear magnetic resonance spectroscopy. The first observed osmoregulatory response of glycogen-containing cells undergoing hypoosmotic shock was release of P(i) into the medium. Within 7 h, reabsorption of P(i) was complete and production of PCCG was initiated. After 12 h, the PCCG content had increased by a factor of 7. Following the same treatment, cells containing little or no glycogen released trehalose and failed to produce PCCG. Thus the production of PCCG/CG in response to hypoosmotic shocking of stationary-phase cells was found to be directly linked to the interconversion of stored glycogen. Hyperosmotic shocking of LO-grown stationary-phase cells with sucrose had no effect on the content of previously synthesized CG/PCCG. The PCCG/CG content and its osmotically induced biosynthesis are discussed in terms of carbon metabolism and a possible role in hypoosmotic adaptation in B. japonicum USDA 110.


Assuntos
Glucanos/biossíntese , Rhizobiaceae/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Carbono/metabolismo , Glicogênio/fisiologia , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Pressão Osmótica , Rhizobiaceae/citologia , Rhizobiaceae/crescimento & desenvolvimento
14.
Carbohydr Res ; 256(1): 13-27, 1994 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-8194069

RESUMO

The inclusion complexes of cyclomaltohexaose (alpha-CD), cyclomaltoheptaose (beta-CD), cyclomaltooctaose (gamma-CD), and polymerized beta-CD (beta-CDn) with chlorogenic acid (CA), the major substrate of apple fruit polyphenol oxidase (PPO), were studied with regard to pH, ionic strength, and temperature in model buffer systems and apple juice. The thermodynamics of CD.CA inclusion complex formation, which were studied in solution using UV spectrophotometry, displayed enthalpy-entropy compensation typical of processes driven by solvation phenomena. We also found that the apparent association constants (K) of the CD.CA equilibrium were relatively insensitive to pH for beta-CD, compared to alpha- and gamma-CDs, but were subject to substantial enhancement at low ionic strengths. The beta-CD.CA inclusion complex was also characterized for binding geometry and stoichiometry at 9.4 T and 25 degrees C in 0.05 M Na phosphate buffer by 1H NMR spectroscopy. A 1:1 stoichiometric ratio for the complex was found using the method of continuous variations. 1H Spin-lattice relaxation and chemical-shift data indicate that the phenolic ring of CA docks within the cavity of beta-CD. The Ks for beta-, alpha-, and gamma-CD determined in apple juice, which contains a mixture of PPO substrates, were found to correlate with PPO activity-related data. Apple juice, treated with beta-CDn, did not brown until CA was added back. These latter findings strongly argue that the mechanism for inhibition of juice browning with cyclodextrins was mainly due to the binding of PPO substrates and not some other means such as enzyme inactivation via sequestration of Cu2+ by CDs.


Assuntos
Catecol Oxidase/química , Ciclodextrinas/química , Frutas/enzimologia , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Catecol Oxidase/metabolismo , Ciclodextrinas/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Matemática , Dados de Sequência Molecular , Espectrofotometria Ultravioleta , Especificidade por Substrato , Termodinâmica
15.
Plant Physiol ; 100(4): 1682-90, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16653184

RESUMO

N(2)-fixing Bradyrhizobium japonicum nodules and cortical tissue derived from these nodules were examined in vivo by (31)P nuclear magnetic resonance (NMR) spectroscopy. Perfusion of the viable nodules and excised cortical tissue with O(2) followed by N(2) or Ar caused a loss of orthophosphate (Pi) resonance magnetization associated with the major portion of acidic Pi (delta 0.9 ppm, pH 5.5) residing in the cortical cells. Resumption of O(2) perfusion restored approximately 80% of the intensity of this peak. Detailed examination of the nuclear relaxation processes, spin-lattice relaxation time (T(1)), and spin-spin relaxation time (T(2)), under perfusion with N(2) or Ar as opposed to O(2), indicated that loss of signal was due to T(1) saturation of the acidic Pi signal under the rapid-pulsed NMR recycling conditions. In excised cortical tissue, Pi T(1), values derived from biexponential relaxation processes under perfusing O(2) were 59% 3.72 +/- 0.93 s and 41% 0.2 +/- 0.08 s, whereas under N(2) these values were 85% 7.07 +/- 1.36 s and 15% 0.39 +/- 0.07 s. The T(1) relaxation behavior of whole nodule vacuolar Pi showed the same trend, but the overall values were somewhat shorter. T(2) values for cortical tissue were also biexponential but were essentially the same under O(2) (38% 0.066 +/- 0.01 s and 63% 0.41 +/- 0.08 s) and N(2) (39% 0.07 +/- 0.01 s and 61% 0.37 +/- 0.01 s) perfusion. Soybean (Glycine max) root tissue as well as Pi solutions exhibited single exponential T(1) decay values that were not altered by changes in the perfusing gas. These data indicate that oxygen induces a change in the physical environment of phosphate in the cortical cell tissue. Although under certain conditions oxygen has been observed to act as a paramagnetic relaxation agent, model T(1) experiments demonstrate that O(2) does not significantly influence Pi relaxation in this manner. Alternatively, we suggest that an increase in solution viscosity brought on by the production of an occlusion glycoprotein (under O(2) perfusion) is responsible for the observed relaxation changes.

16.
Plant Physiol ; 100(4): 1691-7, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16653185

RESUMO

The effects of selected gas perfusion treatments on the spinlattice relaxation times (T(1)) of the soybean (Glycine max) nodule cortex and inner nodule tissue were studied with (1)H high resolution magnetic resonance microscopy. Three gas treatments were used: (a) perfusion with O(2) followed by N(2); (b) O(2) followed by O(2); and (c) air followed by N(2). Soybean plants with intact attached nodules were placed into the bore of a superconducting magnet and a selected root with nodules was perfused with the gas of interest. Magnetic resonance images were acquired with repetition times from 50 to 3200 ms. The method of partial saturation was used to calculate T(1) times on selected regions of the image. Calculated images based on T(1) showed longer T(1) values in the cortex than in the inner nodule during all of the gas perfusions. When nodules were perfused with O(2)-O(2), there was no significant change in the T(1) of the nodule between the two gas treatments. When the nodule was perfused with O(2)-N(2) or air-N(2), however, the T(1) of both the cortex and inner nodule increased. In these experiments, the increase in T(1) of the cortex was 2- to 3-fold greater than the increase observed in the inner nodule. A similar change in T(1) was found in detached live nodules, but there was no change in T(1) with selective gas perfusion of detached dead nodules. These observations suggest that cortical cells respond differently to selected gas perfusion than the inner nodule, with the boundary of T(1) change sharply delineated at the interface of the inner nodule and the inner cortex.

17.
Biochim Biophys Acta ; 1116(3): 215-25, 1992 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-1610877

RESUMO

In our previous in vivo 31P study of intact nitrogen-fixing nodules (Rolin, D.B., Boswell, R.T., Sloger, C., Tu, S.I. and Pfeffer, P.E., 1989 Plant Physiol. 89, 1238-1246), we observed an unknown phosphodiester. The compound was also observed in the spectra of isolated bacteroids as well as extracts of the colonizing Bradyrhizobium japonicum USDA 110. In order to characterize the phosphodiester in the present study, we took advantage of the relatively hydrophobic nature of the material and purified it by elution from a C-18 silica reverse-phase chromatography column followed by final separation on an aminopropyl silica HPLC column. Structural characterization of this compound with a molecular weight of 2271 (FAB mass spectrometry), using 13C-1H and 31P-1H heteronuclear 2D COSY and double quantum 2D phase sensitive homonuclear 1H COSY NMR spectra, demonstrated that the molecule contained beta-(1,3); beta-(1,6); beta-(1,3,6) and beta-linked non-reducing terminal glucose units in the ratio of 5:6:1:1, respectively, as well as one C-6 substituted phosphocholine (PC) moiety associated with one group of (1,3) beta-glucose residues. Carbohydrate degradation analysis indicated that this material was a macrocyclic glucan, (absence of a reducing end group) with two separated units containing three consecutively linked beta-(1,3) glucose residues and 6 beta-(1,6) glucose residues. The sequences of beta-(1,3)-linked glucose units contained a single non-reducing, terminal, unsubstituted glucose linked at the C-6 position and a PC group attached primarily to an unsubstituted C-6 position of a beta-(1,3)-linked glucose.


Assuntos
Glucanos/química , Fosforilcolina/química , Rhizobiaceae/química , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Glucanos/isolamento & purificação , Glucanos/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Fixação de Nitrogênio , Rhizobiaceae/metabolismo
18.
Lipids ; 27(4): 285-8, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1518386

RESUMO

Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Ácidos Graxos Insaturados/química , Algoritmos , Isótopos de Carbono , Ésteres , Espectroscopia de Ressonância Magnética
19.
Carbohydr Res ; 226(1): 29-42, 1992 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-1499020

RESUMO

The 13C CPMAS n.m.r. spectrum of 4-O-beta-D-galactopyranosyl-D-fructose (lactulose) trihydrate, C12H22O11.3 H2O, identifies the isomer in the crystals as the beta-furanose. This is confirmed by a crystal structure analysis, using CuK alpha X-ray data at room temperature. The space group is P212121, with Z = 4 and cell dimensions a = 9.6251(3), b = 12.8096(3), c = 17.7563(4) A. The structure was refined to R = 0.031 and Rw 0.025 for 1929 observed structure amplitudes. All the hydrogen atoms were unambigously located on difference syntheses. The conformation of the pyranose ring is the normal 4C1 chair and that of the furanose ring is 4T3. The 1----4 linkage torsion angles are O-5'-C-1'-O-1'-C-4 = 79.9(2) degrees and C-1'-O-1'-C-4-C-5 = -170.3(2) degrees. All hydroxyls, ring and glycosidic oxygens, and water molecules are involved in the hydrogen bonding, which consists of infinite chains linked together by water molecules to form a three-dimensional network. There is a three-centered intramolecular, interresidue hydrogen bond from O-3-H to O-5' and O-6'. The n.m.r. spectrum of the amorphous, dehydrated trihydrate suggests the occurrence of a solid-state reaction forming the same isomeric mixture as was observed in crystalline anhydrous lactulose, although the mutarotation of the trihydrate when dissolved in Me2SO is very slow.


Assuntos
Lactulose/química , Configuração de Carboidratos , Sequência de Carboidratos , Cristalografia , Ligação de Hidrogênio , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Água/química
20.
Appl Environ Microbiol ; 58(3): 821-5, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16348673

RESUMO

Various flavonoids were tested for their ability to stimulate in vitro growth of germinated spores of vesicular-arbuscular mycorrhizal fungi. Experiments were performed in the presence of 2% CO(2), previously demonstrated to be required for growth of Gigaspora margarita (G. Bécard and Y. Piché, Appl. Environ. Microbiol. 55:2320-2325, 1989). Only the flavonols stimulated fungal growth. The flavones, flavanones, and isoflavones tested were generally inhibitory. Quercetin (10 muM) prolonged hyphal growth from germinated spores of G. margarita from 10 to 42 days. An average of more than 500 mm of hyphal growth and 13 auxiliary cells per spore were obtained. Quercetin also stimulated the growth of Glomus etunicatum. The glycosides of quercetin, rutin, and quercitrin were not stimulatory. The axenic growth of G. margarita achieved here under rigorously defined conditions is the most ever reported for a vesicular-arbuscular mycorrhizal fungus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...