Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 104: 53-65, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887455

RESUMO

Emerging evidence suggests that the mechanical behavior of the brain plays a critical role in development, disease, and aging. Recent studies have begun to characterize the mechanical behavior of gray and white matter tissue and to identify sets of material models that best reproduce the stress-strain behavior of different brain regions. Yet, these models are mainly phenomenological in nature, their parameters often lack clear physical interpretation, and they fail to correlate the mechanical behavior to the underlying microstructural composition. Here we make a first attempt towards identifying general relations between microstructure and mechanics with the ultimate goal to develop microstructurally motivated constitutive equations for human brain tissue. Using histological staining, we analyze the microstructure of brain specimens from different anatomical regions, the cortex, basal ganglia, corona radiata, and corpus callosum, and identify the regional stiffness and viscosity under multiple loading conditions, simple shear, compression, and tension. Strikingly, our study reveals a negative correlation between cell count and stiffness, a positive correlation between myelin content and stiffness, and a negative correlation between proteoglycan content and stiffness. Additionally, our analysis shows a positive correlation between lipid and proteoglycan content and viscosity. We demonstrate how understanding the microstructural origin of the macroscopic behavior of the brain can help us design microstructure-informed material models for human brain tissue that inherently capture regional heterogeneities. This study represents an important step towards using brain tissue stiffness and viscosity as early diagnostic markers for clinical conditions including chronic traumatic encephalopathy, Alzheimer's and Parkinson's disease, or multiple sclerosis. STATEMENT OF SIGNIFICANCE: The complex and heterogeneous mechanical properties of brain tissue play a critical role for brain function. To understand and predict how brain tissue properties vary in space and time, it will be key to link the mechanical behavior to the underlying microstructural composition. Here we use histological staining to quantify area fractions of microstructural components of mechanically tested specimens and evaluate their individual contributions to the nonlinear macroscopic mechanical response. We further propose a microstructure-informed material model for human brain tissue that inherently captures regional heterogeneities. The current work provides unprecedented insights into the biomechanics of human brain tissue, which are highly relevant to develop refined computational models for brain tissue behavior or to advance neural tissue engineering.


Assuntos
Encéfalo/anatomia & histologia , Modelos Anatômicos , Idoso , Fenômenos Biomecânicos , Elasticidade , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
2.
Biochemistry ; 30(26): 6548-56, 1991 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-2054353

RESUMO

Visible absorption spectroscopic experiments show that the N intermediate is the main photoproduct of a highly hydrated film of the light-adapted bacteriorhodopsin (70% water by weight) at pH 10 and 274 K. The difference Fourier transform infrared spectrum between the N intermediate and unphotolyzed light-adapted bacteriorhodopsin was recorded under these conditions. A small amount of the M intermediate present did not affect this spectrum significantly. The difference spectrum exhibited a positive band at 1755 cm-1 (probably due to Asp-85) and a negative band at 1742 cm-1 (due to Asp-96), neither of which was observed for the M intermediate. The spectrum of the N intermediate at pH 7 was nearly identical with that at pH 10. Spectra at pH 10 also were measured with isotope-substituted samples. A vibrational band at 1692 cm-1 due to the peptide bond disappeared, and a band at 1558 cm-1 emerged upon formation of the N intermediate. The spectrum also displayed bands containing the N-H and C15-H in-plane bending vibrational modes at 1394 and 1303 cm-1. These frequencies are similar to those of the L intermediate while the intensities of these bands are larger than those in the L intermediate, suggesting that the Schiff bases of both the L and N intermediates have a strong hydrogen-bonding interaction with the protein and that the C12-H to C15-H region of the chromophore is less twisted in the N intermediate than in the L intermediate.


Assuntos
Bacteriorodopsinas/química , Sítios de Ligação , Análise de Fourier , Halobacterium/metabolismo , Luz , Conformação Proteica , Espectrofotometria Infravermelho/métodos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...