Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1139, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326372

RESUMO

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.


Assuntos
Neurônios , Raios Ultravioleta , Potenciais de Ação , Potenciais da Membrana , Membrana Celular , Neurônios/fisiologia
2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645959

RESUMO

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.

3.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979366

RESUMO

Millions of years of evolution have produced proteinaceous water channels (aquaporins) that combine perfect selectivity with a transport rate at the edge of the diffusion limit. However, Itoh et al. recently claimed in Science that artificial channels are 100 times faster and almost as selective. The published deflation kinetics of vesicles containing channels or channel elements indicate otherwise, since they do not demonstrate the facilitation of water transport. In an illustrated tutorial on the experimental basis of stopped-flow measurements, we point out flaws in data processing. In contrast to the assumption voiced in Science, individual vesicles cannot simultaneously shrink with two different kinetics. Moreover, vesicle deflation within the dead time of the instrument cannot be detected. Since flawed reports of ultrafast water channels in Science are not a one-hit-wonder as evidenced by a 2018 commentary by Horner and Pohl in Science, we further discuss the achievable limits of single-channel water permeability. After analyzing (i) diffusion limits for permeation through narrow channels and (ii) hydrodynamics in the surrounding reservoirs, we conclude that it is unlikely to fundamentally exceed the evolutionarily optimized water-channeling performance of the fastest aquaporins while maintaining near-perfect selectivity.


Assuntos
Aquaporinas , Água , Água/metabolismo , Permeabilidade , Cinética , Difusão
4.
J Photochem Photobiol B ; 239: 112633, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608401

RESUMO

The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited "molecular drill" oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.


Assuntos
Gramicidina , Oxigênio Singlete , Oxigênio Singlete/química , Gramicidina/farmacologia , Gramicidina/química , Lipossomas Unilamelares , Bicamadas Lipídicas/química , Membrana Celular
5.
J Photochem Photobiol B ; 224: 112320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600201

RESUMO

Membrane proteins can be regulated by alterations in material properties intrinsic to the hosting lipid bilayer. Here, we investigated whether the reversible photoisomerization of bilayer-embedded diacylglycerols (OptoDArG) with two azobenzene-containing acyl chains may trigger such regulatory events. We observed an augmented open probability of the mechanosensitive model channel gramicidin A (gA) upon photoisomerizing OptoDArG's acyl chains from trans to cis: integral planar bilayer conductance brought forth by hundreds of simultaneously conducting gA dimers increased by typically >50% - in good agreement with the observed increase in single-channel lifetime. Further, (i) increments in the electrical capacitance of planar lipid bilayers and protrusion length of aspirated giant unilamellar vesicles into suction pipettes, as well as (ii) changes of small-angle X-ray scattering of multilamellar vesicles indicated that spontaneous curvature, hydrophobic thickness, and bending elasticity decreased upon switching from trans- to cis-OptoDArG. Our bilayer elasticity model for gA supports the causal relationship between changes in gA activity and bilayer material properties upon photoisomerization. Thus, we conclude that photolipids are deployable for converting bilayers of potentially diverse origins into light-gated actuators for mechanosensitive proteins.


Assuntos
Gramicidina/química , Canais Iônicos/efeitos da radiação , Luz , Bicamadas Lipídicas/efeitos da radiação , Canais Iônicos/química , Isomerismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Biophys Rev ; 13(6): 913-923, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035593

RESUMO

Various nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG ‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG ‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG ‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...