Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(17): 176001, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728707

RESUMO

We study dipolar excitons confined at 330 mK in a square electrostatic lattice of a GaAs double quantum well. In the dipolar occupation blockade regime, at 3/2 filling, we evidence that excitons form a face-centered superlattice quantum solid. This phase is realized with high purity across 36 lattice sites, in a regime where the mean interaction energy exceeds the depth of the electrostatic lattice confinement. The superlattice solid then closely relates to Wigner crystals.

2.
Sci Adv ; 10(18): eadk6960, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701210

RESUMO

We have created a spatially homogeneous polariton condensate in thermal equilibrium, up to very high condensate fraction. Under these conditions, we have measured the coherence as a function of momentum and determined the total coherent fraction of this boson system from very low density up to density well above the condensation transition. These measurements reveal a consistent power law for the coherent fraction as a function of the total density over nearly three orders of its magnitude. The same power law is seen in numerical simulations solving the two-dimensional Gross-Pitaevskii equation for the equilibrium coherence.

3.
Nature ; 628(8006): 78-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538799

RESUMO

Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states1, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description2-5. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons. They are characterized by polarized states with chirality6-8 of +2 or -2, and energy gaps coinciding with the fundamental neutral collective excitations (namely, magnetorotons9,10) in the long-wavelength limit. However, CGMs remain experimentally inaccessible. Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton emerges under a specific polarization scheme corresponding to angular momentum S = -2, which persists at extremely long wavelength. Remarkably, the mode chirality remains -2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have characteristic energies and sharp peaks with marked temperature and filling-factor dependence, corroborating the assignment of long-wavelength magnetorotons. The observations capture the essentials of CGMs and support the FQH geometrical description, paving the way to unveil rich physics of quantum metric effects in topological correlated systems.

4.
Sci Adv ; 10(12): eadi6762, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517958

RESUMO

Phase fluctuations determine the low-energy properties of quantum condensates. However, at the condensation threshold, both density and phase fluctuations are relevant. While strong emphasis has been given to the investigation of phase fluctuations, which dominate the physics of the quantum system away from the critical point, number fluctuations have been much less explored even in thermal equilibrium. In this work, we report experimental observation and theoretical description of fluctuations in a circularly confined nonequilibrium Bose-Einstein condensate of polaritons near the condensation threshold. We observe critical fluctuations, which combine the number fluctuations of a single-mode condensate state and competition between different states. The latter is analogous to mode hopping in photon lasers. Our theoretical analysis indicates that this phenomenon is of a quantum character, while classical noise of the pump is not sufficient to explain the experiments. The manifestation of a critical quantum state competition unlocks possibilities for the study of condensate formation while linking to practical realizations in photonic lasers.

5.
Phys Rev Lett ; 132(7): 076501, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427873

RESUMO

Transport measurement, which applies an electric field and studies the migration of charged particles, i.e., the current, is the most widely used technique in condensed matter studies. It is generally assumed that the quantum phase remains unchanged when it hosts a sufficiently small probing current, which is, surprisingly, rarely examined experimentally. In this Letter, we study the ultra-high-mobility two-dimensional electron system using a propagating surface acoustic wave, whose traveling speed is affected by the electrons' compressibility. The acoustic power used in our Letter is several orders of magnitude lower than previous reports, and its induced perturbation to the system is smaller than the transport current. Therefore we are able to observe the quantum phases become more incompressible when hosting a perturbative current.

6.
Proc Natl Acad Sci U S A ; 120(52): e2314212120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113254

RESUMO

The discovery of the fractional quantum Hall state (FQHS) in 1982 ushered a new era of research in many-body condensed matter physics. Among the numerous FQHSs, those observed at even-denominator Landau level filling factors are of particular interest as they may host quasiparticles obeying non-Abelian statistics and be of potential use in topological quantum computing. The even-denominator FQHSs, however, are scarce and have been observed predominantly in low-disorder two-dimensional (2D) systems when an excited electron Landau level is half filled. An example is the well-studied FQHS at filling factor [Formula: see text] 5/2 which is believed to be a Bardeen-Cooper-Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report the observation of even-denominator FQHSs at [Formula: see text] 3/10, 3/8, and 3/4 in the lowest Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably, these states can be interpreted as even-denominator FQHSs of CFs, emerging from pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a hole system with significant Landau level mixing and, more generally, the pairing of CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization of FQHSs with non-Abelian anyons.

7.
Phys Rev Lett ; 130(26): 266302, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450788

RESUMO

We report an unusual magnetoresistance that strengthens with the temperature in a dilute two-dimensional (2D) hole system in GaAs/AlGaAs quantum wells with densities p=1.98-0.99×10^{10}/cm^{2} where r_{s}, the ratio between Coulomb energy and Fermi energy, is as large as 20-30. We show that, while the system exhibits a negative parabolic magnetoresistance at low temperatures (≲0.4 K) characteristic of an interacting Fermi liquid, a positive magnetoresistance emerges unexpectedly at higher temperatures, and grows with increasing temperature even in the regime T∼E_{F}, close to the Fermi energy. This unusual positive magnetoresistance at high temperatures can be attributed to the viscous transport of 2D hole fluid in the hydrodynamic regime where holes scatter frequently with each other. These findings give insight into the collective transport of strongly interacting carriers in the r_{s}≫1 regime and new routes toward magnetoresistance at high temperatures.


Assuntos
Temperatura Baixa , Hidrodinâmica , Temperatura
8.
Phys Rev Lett ; 130(24): 246401, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390428

RESUMO

The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. We examine this quantum phase with simultaneous capacitance and conductance measurements, and observe a large capacitive response while the conductance vanishes. We study one sample with four devices whose length scale is comparable with the crystal's correlation length, and deduce the crystal's elastic modulus, permittivity, pinning strength, etc. Such a systematic quantitative investigation of all properties on a single sample has a great promise to advance the study of Wigner crystals.


Assuntos
Elétrons , Módulo de Elasticidade
9.
Nat Commun ; 14(1): 3464, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308474

RESUMO

Spectra of low-lying elementary excitations are critical to characterize properties of bosonic quantum fluids. Usually these spectra are difficult to observe, due to low occupation of non-condensate states compared to the ground state. Recently, low-threshold Bose-Einstein condensation was realised in a symmetry-protected bound state in the continuum, at a saddle point, thanks to coupling of this electromagnetic resonance to semiconductor excitons. While it has opened the door to long-living polariton condensates, their intrinsic collective properties are still unexplored. Here we unveil the peculiar features of the Bogoliubov spectrum of excitations in this system. Thanks to the dark nature of the bound-in-the-continuum state, collective excitations lying directly above the condensate become observable in enhanced detail. We reveal interesting aspects, such as energy-flat parts of the dispersion characterized by two parallel stripes in photoluminescence pattern, pronounced linearization at non-zero momenta in one of the directions, and a strongly anisotropic velocity of sound.

10.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242039

RESUMO

The performance of a semiconductor quantum-electronic device ultimately depends on the quality of the semiconductor materials it is made of and on how well the device is isolated from electrostatic fluctuations caused by unavoidable surface charges and other sources of electric noise. Current technology to fabricate quantum semiconductor devices relies on surface gates which impose strong limitations on the maximum distance from the surface where the confining electrostatic potentials can be engineered. Surface gates also introduce strain fields which cause imperfections in the semiconductor crystal structure. Another way to create confining electrostatic potentials inside semiconductors is by means of light and photosensitive dopants. Light can be structured in the form of perfectly parallel sheets of high and low intensity which can penetrate deep into a semiconductor and, importantly, light does not deteriorate the quality of the semiconductor crystal. In this work, we employ these important properties of structured light to form metastable states of photo-sensitive impurities inside a GaAs/AlGaAs quantum well structure in order to create persistent periodic electrostatic potentials at large predetermined distances from the sample surface. The amplitude of the light-induced potential is controlled by gradually increasing the light fluence at the sample surface and simultaneously measuring the amplitude of Weiss commensurability oscillations in the magnetoresistivity.

11.
Nat Mater ; 22(2): 170-174, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482205

RESUMO

Strongly correlated quantum particles in lattice potentials are the building blocks for a wide variety of quantum insulators-for instance, Mott phases and density waves breaking lattice symmetry1-3. Such collective states are accessible to bosonic and fermionic systems2,4-10,11,12. To expand further the spectrum of accessible quantum matter phases, mixing both species is theoretically appealing because density order then competes with phase separation13-16. Here we manipulate such a Bose-Fermi mixture by confining neutral (boson-like) and charged (fermion-like) dipolar excitons in an artificial square lattice of a GaAs bilayer. At unitary lattice filling, strong inter- and intraspecies interactions stabilize insulating phases when the fraction of charged excitons is around (1/3, 1/2, 2/3). We evidence that dual Bose-Fermi density waves are then realized, with species ordered in alternating stripes. Our observations highlight that dipolar excitons allow for controlled implementations of Bose-Fermi Hubbard models extended by off-site interactions.

12.
Phys Rev Lett ; 128(1): 017401, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061454

RESUMO

Impacts of domain textures on low-lying neutral excitations in the bulk of fractional quantum Hall effect (FQHE) systems are probed by resonant inelastic light scattering. We demonstrate that large domains of quantum fluids support long-wavelength neutral collective excitations with well-defined wave vector (momentum) dispersion that could be interpreted by theories for uniform phases. Access to dispersive low-lying neutral collective modes in large domains of FQHE fluids such as long wavelength magnetorotons at filling factor v=1/3 offer significant experimental access to strong electron correlation physics in the FQHE.

13.
Nat Commun ; 12(1): 5312, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493723

RESUMO

Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1-3. Here we investigate transport properties of hDWs in the ν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity.

14.
Phys Rev Lett ; 126(25): 256802, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241499

RESUMO

We create laterally large and low-disorder GaAs quantum-well-based quantum dots that act as small two-dimensional electron systems. We monitor tunneling of single electrons to the dots by means of capacitance measurements and identify single-electron capacitance peaks in the addition spectrum from occupancies of one up to thousands of electrons. The data show two remarkable phenomena in the Landau level filling factor range ν=2 to ν=5 in selective probing of the edge states of the dot: (i) Coulomb blockade peaks arise from the entrance of two electrons rather than one; (ii) at and near ν=5/2 and at fixed gate voltage, these double-height peaks appear uniformly in a magnetic field with a flux periodicity of h/2e, but they group into pairs at other filling factors.

15.
Phys Rev Lett ; 126(10): 106402, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784167

RESUMO

Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs quantum well transistors, which presents the evidence of flat bands in semiconductor AG. Two emerging peaks in photoluminescence spectra tuned by backgate voltages probe the singularity doublet of AG flat bands and demonstrate their accessibility to the Fermi level. As the Fermi level crosses the doublet, the spectra display dramatic stability against electron density, indicating interplays between electron-electron interactions and honeycomb symmetry. Our results provide a new flexible platform to explore intriguing flat band physics.

16.
Phys Rev Lett ; 126(6): 067404, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635707

RESUMO

We study two-dimensional excitons confined in a lattice potential, for high fillings of the lattice sites. We show that a quasicondensate is possibly formed for small values of the lattice depth, but for larger ones the critical phase-space density for quasicondensation rapidly exceeds our experimental reach, due to an increase of the exciton effective mass. On the other hand, in the regime of a deep lattice potential where excitons are strongly localized at the lattice sites, we show that an array of phase-independent quasicondensates, different from a Mott insulator, is realized.

17.
Light Sci Appl ; 9: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435468

RESUMO

Semiconductor devices are strong competitors in the race for the development of quantum computational systems. In this work, we interface two semiconductor building blocks of different dimensionalities with complementary properties: (1) a quantum dot hosting a single exciton and acting as a nearly ideal single-photon emitter and (2) a quantum well in a 2D microcavity sustaining polaritons, which are known for their strong interactions and unique hydrodynamic properties, including ultrafast real-time monitoring of their propagation and phase mapping. In the present experiment, we can thus observe how the injected single particles propagate and evolve inside the microcavity, giving rise to hydrodynamic features typical of macroscopic systems despite their genuine intrinsic quantum nature. In the presence of a structural defect, we observe the celebrated quantum interference of a single particle that produces fringes reminiscent of wave propagation. While this behavior could be theoretically expected, our imaging of such an interference pattern, together with a measurement of antibunching, constitutes the first demonstration of spatial mapping of the self-interference of a single quantum particle impinging on an obstacle.

18.
Nat Commun ; 11(1): 217, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924751

RESUMO

Quantum fluids of light are realized in semiconductor microcavities using exciton-polaritons, solid-state quasi-particles with a light mass and sizeable interactions. Here, we use the microscopic analogue of oceanographic techniques to measure the excitation spectrum of a thermalised polariton condensate. Increasing the fluid density, we demonstrate the transition from a free-particle parabolic dispersion to a linear, sound-like Goldstone mode characteristic of superfluids at equilibrium. Notably, we reveal the effect of an asymmetric pumping by showing that collective excitations are created with a definite direction with respect to the condensate. Furthermore, we measure the critical sound speed for polariton superfluids close to equilibrium.

19.
Nat Commun ; 11(1): 429, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969565

RESUMO

Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.

20.
Phys Rev Lett ; 123(19): 197401, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765177

RESUMO

We investigate the photon-dressed state of excitons in bulk GaAs by optical pump-probe spectroscopy. We reveal that the high-energy branch of the dressed states continuously evolves into a singular enhancement at the absorption edge in the high-density region where the exciton picture is no longer valid. Comparing the experimental result with a simulation based on semiconductor Bloch equations, we show that the dressed state in such a high-density region is better viewed as a Bardeen-Cooper-Schrieffer-like state, which has been theoretically anticipated to exist over decades. Having seen that the dressed state can be regarded as a macroscopic coherent state driven by an external light field, we also discuss the decoherence from the dressed state to an incoherent state after the photoexcitation in view of the Coulomb enhancement in the transient absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...