Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 57(3): 304-313, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34854139

RESUMO

Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.


Assuntos
Doenças dos Bovinos , Infertilidade Masculina , Acetilação , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Metilação de DNA , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/veterinária , Masculino , Espermatogênese/genética , Testículo/metabolismo
2.
Reprod Domest Anim ; 56(8): 1104-1116, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34013645

RESUMO

Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.


Assuntos
Proliferação de Células , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Sus scrofa , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia
3.
Theriogenology ; 127: 32-40, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639694

RESUMO

Induced pluripotent stem cells (iPSCs) are generated by reprogramming of somatic cells using four transcription factors: OCT4, SOX2, KLF-4, and c-MYC (OSKM). However, reprogramming efficiency of iPSCs is currently poor. In this study, we used the Sertoli line as a novel cell source for somatic cell reprogramming. Neonatal testes were collected from 1-week-old piglets. The testes were digested by a two-step enzymatic method to isolate Sertoli cells. The latter were transfected with retroviral vectors expressing OSKM. The Sertoli iPSC-like colonies were subjected to morphological analysis, alkaline phosphatase staining, RT-PCR, G-banding karyotyping, in vitro differentiation, and in vivo differentiation. Primary Sertoli cells had polygon-shaped morphology and manifested phagocytic activity as determined by a fluorescent bead assay. Sertoli cells also expressed the anti-Müllerian hormone protein in the cytoplasm. According to RT-PCR results, these cells expressed Sertoli cell markers (FSHR, KRT18, and GATA6) and endogenous transcription factors genes (KLF4 and c-MYC). A total of 240 colonies (0.3% efficiency) were detected by day 7 after viral transduction of 72500 cells. The Sertoli iPSC-like colonies contained small cells with a high nucleus-to-cytoplasm ratio. These colonies tested positive for alkaline phosphatase staining, expressed endogenous pluripotency genes, and had a normal karyotype. All these cell lines could form in vitro three-dimensional aggregates that represented three germ layers of embryonic-like cells. A total of two cell lines used for in vivo differentiation produced high-efficiency teratoma. In conclusion, Sertoli cells can efficiently serve as a novel cell source for iPSC reprogramming.


Assuntos
Técnicas de Cultura de Células/veterinária , Técnicas de Reprogramação Celular/veterinária , Células-Tronco Pluripotentes Induzidas/citologia , Células de Sertoli/citologia , Suínos , Animais , Hormônio Antimülleriano/metabolismo , Diferenciação Celular , Linhagem Celular , Cariótipo , Masculino , Transfecção/veterinária
4.
Exp Anim ; 68(1): 35-47, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30089733

RESUMO

Stem cells are promising cell source for treatment of multiple diseases as well as myocardial infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Miócitos Cardíacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Coelhos , Fosfatase Alcalina/fisiologia , Animais , Linhagem Celular , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Proteína Homeobox Nanog/fisiologia , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Antígenos Embrionários Estágio-Específicos/fisiologia
5.
Stem Cell Res ; 24: 21-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034889

RESUMO

Pig induced pluripotent stem cell (piPSC) line was generated from embryonic fibroblast cells using retroviral transduction approaches carrying human transcriptional factors: OCT4, SOX2, KLF4, c-MYC and LIN28. The generated piPSC line, VSMUi001-D, was positive for alkaline phosphatase activity and expressed the pluripotency associated transcription factors including OCT4, SOX2, NANOG and surface markers SSEA-1, all iPSC hallmarks of authenticity. Furthermore, VSMUi001-D exhibited a normal karyotype and formed embryoid bodies in vitro and teratomas in vivo. Upon cardiac differentiation, VSMUi001-D displayed spontaneous beating and expressed cardiomyocyte markers, like cardiac Troponin T.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Proteínas de Ligação a RNA/metabolismo , Suínos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...