Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 473: 186-197, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31560935

RESUMO

The Wnt/ß-catenin signaling pathway is aberrantly activated in colorectal (CRC) and many other cancers, and novel strategies for effectively targeting it may be needed due to its complexity. In this report, SM08502, a novel small molecule in clinical development for the treatment of solid tumors, was shown to reduce Wnt pathway signaling and gene expression through potent inhibition of CDC-like kinase (CLK) activity. SM08502 inhibited serine and arginine rich splicing factor (SRSF) phosphorylation and disrupted spliceosome activity, which was associated with inhibition of Wnt pathway-related gene and protein expression. Additionally, SM08502 induced the generation of splicing variants of Wnt pathway genes, suggesting that its mechanism for inhibition of gene expression includes effects on alternative splicing. Orally administered SM08502 significantly inhibited growth of gastrointestinal tumors and decreased SRSF phosphorylation and Wnt pathway gene expression in xenograft mouse models. These data implicate CLKs in the regulation of Wnt signaling and represent a novel strategy for inhibiting Wnt pathway gene expression in cancers. SM08502 is a first-in-class CLK inhibitor being investigated in a Phase 1 clinical trial for subjects with advanced solid tumors (NCT03355066).


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Concentração Inibidora 50 , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Org Biomol Chem ; 7: 3040-3048, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21359112

RESUMO

Conoidin A (1) is an inhibitor of host cell invasion by the protozoan parasite Toxoplasma gondii. In the course of studies aimed at identifying potential targets of this compound, we determined that it binds to the T. gondii enzyme peroxiredoxin II (TgPrxII). Peroxiredoxins are a widely conserved family of enzymes that function in antioxidant defense and signal transduction, and changes in PrxII expression are associated with a variety of human diseases, including cancer. Disruption of the TgPrxII gene by homologous recombination had no effect on the sensitivity of the parasites to 1, suggesting that TgPrxII is not the invasion-relevant target of 1. However, we showed that 1 binds covalently to the peroxidatic cysteine of TgPrxII, inhibiting its enzymatic activity in vitro. Studies with human epithelial cells showed that 1 also inhibits hyperoxidation of human PrxII. These data identify Conoidin A as a novel inhibitor of this important class of antioxidant and redox signaling enzymes.

3.
J Cell Biol ; 175(5): 779-89, 2006 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-17145963

RESUMO

Inactivation of eukaryotic 2-Cys peroxiredoxins (Prxs) by hyperoxidation has been proposed to promote accumulation of hydrogen peroxide (H2O2) for redox-dependent signaling events. We examined the oxidation and oligomeric states of PrxI and -II in epithelial cells during mitogenic signaling and in response to fluxes of H2O2. During normal mitogenic signaling, hyperoxidation of PrxI and -II was not detected. In contrast, H2O2-dependent cell cycle arrest was correlated with hyperoxidation of PrxII, which resulted in quantitative recruitment of approximately 66- and approximately 140-kD PrxII complexes into large filamentous oligomers. Expression of cyclin D1 and cell proliferation did not resume until PrxII-SO2H was reduced and native PrxII complexes were regenerated. Ectopic expression of PrxI or -II increased Prx-SO2H levels in response to oxidant exposure and failed to protect cells from arrest. We propose a model in which Prxs function as peroxide dosimeters in subcellular processes that involve redox cycling, with hyperoxidation controlling structural transitions that alert cells of perturbations in peroxide homeostasis.


Assuntos
Ciclo Celular , Oxirredução , Peroxidases/química , Peroxidases/metabolismo , Peróxidos/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Modelos Biológicos , Estresse Oxidativo , Peroxirredoxinas , Soro/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...