Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Bioinformatics ; 2014: 867179, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876837

RESUMO

Protein structure prediction (PSP) has been one of the most challenging problems in computational biology for several decades. The challenge is largely due to the complexity of the all-atomic details and the unknown nature of the energy function. Researchers have therefore used simplified energy models that consider interaction potentials only between the amino acid monomers in contact on discrete lattices. The restricted nature of the lattices and the energy models poses a twofold concern regarding the assessment of the models. Can a native or a very close structure be obtained when structures are mapped to lattices? Can the contact based energy models on discrete lattices guide the search towards the native structures? In this paper, we use the protein chain lattice fitting (PCLF) problem to address the first concern; we developed a constraint-based local search algorithm for the PCLF problem for cubic and face-centered cubic lattices and found very close lattice fits for the native structures. For the second concern, we use a number of techniques to sample the conformation space and find correlations between energy functions and root mean square deviation (RMSD) distance of the lattice-based structures with the native structures. Our analysis reveals weakness of several contact based energy models used that are popular in PSP.

2.
BMC Bioinformatics ; 14 Suppl 2: S16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368706

RESUMO

BACKGROUND: Protein structure prediction is an important but unsolved problem in biological science. Predicted structures vary much with energy functions and structure-mapping spaces. In our simplified ab initio protein structure prediction methods, we use hydrophobic-polar (HP) energy model for structure evaluation, and 3-dimensional face-centred-cubic lattice for structure mapping. For HP energy model, developing a compact hydrophobic-core (H-core) is essential for the progress of the search. The H-core helps find a stable structure with the lowest possible free energy. RESULTS: In order to build H-cores, we present a new Spiral Search algorithm based on tabu-guided local search. Our algorithm uses a novel H-core directed guidance heuristic that squeezes the structure around a dynamic hydrophobic-core centre. We applied random walks to break premature H-cores and thus to avoid early convergence. We also used a novel relay-restart technique to handle stagnation. CONCLUSIONS: We have tested our algorithms on a set of benchmark protein sequences. The experimental results show that our spiral search algorithm outperforms the state-of-the-art local search algorithms for simplified protein structure prediction. We also experimentally show the effectiveness of the relay-restart.


Assuntos
Algoritmos , Modelos Teóricos , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas
3.
BMC Bioinformatics ; 14 Suppl 2: S19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368768

RESUMO

BACKGROUND: Given a protein's amino acid sequence, the protein structure prediction problem is to find a three dimensional structure that has the native energy level. For many decades, it has been one of the most challenging problems in computational biology. A simplified version of the problem is to find an on-lattice self-avoiding walk that minimizes the interaction energy among the amino acids. Local search methods have been preferably used in solving the protein structure prediction problem for their efficiency in finding very good solutions quickly. However, they suffer mainly from two problems: re-visitation and stagnancy. RESULTS: In this paper, we present an efficient local search algorithm that deals with these two problems. During search, we select the best candidate at each iteration, but store the unexplored second best candidates in a set of elite conformations, and explore them whenever the search faces stagnation. Moreover, we propose a new non-isomorphic encoding for the protein conformations to store the conformations and to check similarity when applied with a memory based search. This new encoding helps eliminate conformations that are equivalent under rotation and translation, and thus results in better prevention of re-visitation. CONCLUSION: On standard benchmark proteins, our algorithm significantly outperforms the state-of-the art approaches for Hydrophobic-Polar energy models and Face Centered Cubic Lattice.


Assuntos
Algoritmos , Biologia Computacional/métodos , Conformação Proteica , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...