Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 14506-14513, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38708110

RESUMO

HIV-1 (human immunodeficiency virus-1) has been causing severe pandemics by attacking the immune system of its host. Left untreated, it can lead to AIDS (acquired immunodeficiency syndrome), where death is inevitable due to opportunistic diseases. Therefore, discovering new antiviral drugs against HIV-1 is crucial. This study aimed to explore a novel machine learning approach to classify compounds that inhibit HIV-1 integrase and screen the dataset of repurposing compounds. The present study had two main stages: selecting the best type of fingerprint or molecular descriptor using the Wilcoxon signed-rank test and building a computational model based on machine learning. In the first stage, we calculated 16 different types of fingerprint or molecular descriptors from the dataset and used each of them as input features for 10 machine-learning models, which were evaluated through cross-validation. Then, a meta-analysis was performed with the Wilcoxon signed-rank test to select the optimal fingerprint or molecular descriptor types. In the second stage, we constructed a model based on the optimal fingerprint or molecular descriptor type. This data followed the machine learning procedure, including data preprocessing, outlier handling, normalization, feature selection, model selection, external validation, and model optimization. In the end, an XGBoost model and RDK7 fingerprint were identified as the most suitable. The model achieved promising results, with an average precision of 0.928 ± 0.027 and an F1-score of 0.848 ± 0.041 in cross-validation. The model achieved an average precision of 0.921 and an F1-score of 0.889 in external validation. Molecular docking was performed and validated by redocking for docking power and retrospective control for screening power, with the AUC metrics being 0.876 and the threshold being identified at -9.71 kcal mol-1. Finally, 44 compounds from DrugBank repurposing data were selected from the QSAR model, then three candidates were identified as potential compounds from molecular docking, and PSI-697 was detected as the most promising molecule, with in vitro experiment being not performed (docking score: -17.14 kcal mol-1, HIV integrase inhibitory probability: 69.81%).

2.
IEEE Trans Image Process ; 30: 7025-7037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329165

RESUMO

Quantitative phase imaging (QPI) is an emerging label-free technique that produces images containing morphological and dynamical information without contrast agents. Unfortunately, the phase is wrapped in most imaging system. Phase unwrapping is the computational process that recovers a more informative image. It is particularly challenging with thick and complex samples such as organoids. Recent works that rely on supervised training show that deep learning is a powerful method to unwrap the phase; however, supervised approaches require large and representative datasets which are difficult to obtain for complex biological samples. Inspired by the concept of deep image priors, we propose a deep-learning-based method that does not need any training set. Our framework relies on an untrained convolutional neural network to accurately unwrap the phase while ensuring the consistency of the measurements. We experimentally demonstrate that the proposed method faithfully recovers the phase of complex samples on both real and simulated data. Our work paves the way to reliable phase imaging of thick and complex samples with QPI.


Assuntos
Aprendizado Profundo , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Algoritmos , Animais , Células Cultivadas , Intestino Delgado/citologia , Camundongos , Organoides/citologia , Organoides/diagnóstico por imagem , Técnicas de Cultura de Tecidos
3.
Opt Express ; 28(3): 3905-3921, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122051

RESUMO

Optical diffraction tomography is an effective tool to estimate the refractive indices of unknown objects. It proceeds by solving an ill-posed inverse problem for which the wave equation governs the scattering events. The solution has traditionally been derived by the minimization of an objective function in which the data-fidelity term encourages measurement consistency while the regularization term enforces prior constraints. In this work, we propose to train a convolutional neural network (CNN) as the projector in a projected-gradient-descent method. We iteratively produce high-quality estimates and ensure measurement consistency, thus keeping the best of CNN-based and regularization-based worlds. Our experiments on two-dimensional-simulated and real data show an improvement over other conventional or deep-learning-based methods. Furthermore, our trained CNN projector is general enough to accommodate various forward models for the handling of multiple-scattering events.

4.
Nat Methods ; 16(6): 561, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31097821

RESUMO

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

5.
Nat Methods ; 16(5): 387-395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962624

RESUMO

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Software , Algoritmos
6.
Opt Express ; 26(3): 2749-2763, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401811

RESUMO

Taking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers. We present reconstructions that deploy either the beam-propagation method or the iterative Lippmann-Schwinger model, combined with total-variation regularization. They suggest that our proposed (intensity-only) method can reach the same performance as reconstructions from holographic (complex) data. This is of particular interest from a practical point of view because it allows one to simplify the acquisition setup.

7.
Opt Express ; 25(18): 21786-21800, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041472

RESUMO

Optical diffraction tomography relies on solving an inverse scattering problem governed by the wave equation. Classical reconstruction algorithms are based on linear approximations of the forward model (Born or Rytov), which limits their applicability to thin samples with low refractive-index contrasts. More recent works have shown the benefit of adopting nonlinear models. They account for multiple scattering and reflections, improving the quality of reconstruction. To reduce the complexity and memory requirements of these methods, we derive an explicit formula for the Jacobian matrix of the nonlinear Lippmann-Schwinger model which lends itself to an efficient evaluation of the gradient of the data-fidelity term. This allows us to deploy efficient methods to solve the corresponding inverse problem subject to sparsity constraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...