Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352317

RESUMO

Despite the revolutionary impacts of CRISPR-Cas gene editing systems, the effective and widespread use of CRISPR technologies in emerging model organisms still faces significant challenges. These include the inefficiency in generating heritable mutations at the organismal level, limited knowledge about the genomic consequences of gene editing, and an inadequate understanding of the inheritance patterns of CRISPR-Cas-induced mutations. This study addresses these issues by 1) developing an efficient microinjection delivery method for CRISPR editing in the microcrustacean Daphnia pulex; 2) assessing the editing efficiency of Cas9 and Cas12a nucleases, examining mutation inheritance patterns, and analyzing the local and global mutation spectrum in the scarlet mutants; and 3) investigating the transcriptomes of scarlet mutants to understand the pleiotropic effects of scarlet underlying their swimming behavior changes. Our reengineered CRISPR microinjection method results in efficient biallelic editing with both nucleases. While indels are dominant in Cas-induced mutations, a few on-site large deletions (>1kb) are observed, most likely caused by microhomology-mediated end joining repair. Knock-in of a stop codon cassette to the scarlet locus was successful, despite complex induced mutations surrounding the target site. Moreover, extensive germline mosaicism exists in some mutants, which unexpectedly produce different phenotypes/genotypes in their asexual progenies. Lastly, our transcriptomic analyses unveil significant gene expression changes associated with scarlet knock-out and altered swimming behavior in mutants, including several genes (e.g., NMDA1, ABAT, CNTNAP2) involved in human neurodegenerative diseases. This study expands our understanding of the dynamics of gene editing in the tractable model organism Daphnia and highlights its promising potential as a neurological disease model.

2.
Invertebr Biol ; 140(2)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34366655

RESUMO

Negative interaction between alleles that arise independently in diverging populations (i.e., Dobzhansky-Muller incompatibilities) can cause reduction of fitness in their hybrids. However, heterosis in hybrids can emerge if hybridization breaks down detrimental epistatic interaction within parental lineages. In this study, we examined the life-history fitness of the inter-specific F1s of two recently diverged microcrustacean species Daphnia pulex and D. pulicaria as well as intra-specific crosses of D. pulex. We identified heterosis in two out of five life-history traits in the inter-specific F1s. According to theories that heterosis can transiently emerge in early speciation, the observation of heterosis in these life-history traits suggests that there are no major genetic incompatibilities between these two species affecting these traits and that D. pulex and D. pulicaria are at an early stage of speciation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...