Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 16949-16958, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645317

RESUMO

Three-dimensional (3D) cell culture systems are becoming increasingly popular due to their ability to mimic the complex process of angiogenesis in cancer, providing more accurate and physiologically relevant data than traditional two-dimensional (2D) cell culture systems. Microwell systems are particularly useful in this context as they provide a microenvironment that more closely resembles the in vivo environment than traditional microwells. Poly(ethylene glycol) (PEG) microwells are particularly advantageous due to their bio-inertness and the ability to tailor their material characteristics depending on the PEG molecular weight. Although there are several methods available for microwell fabrication, most of them are time-consuming and expensive. The current study utilizes a low-cost laser etching technique on poly(methyl methacrylate) materials followed by molding with PDMS to produce microwells. The optimal conditions for making concave microwells are an engraving parameter speed of 600 mm/s, power of 20%, and a design diameter of the microwell of 0.4 mm. The artificial tumor achieved its full size after 7 days of cell growth in a microwell system, and the cells developed drugs through a live/dead assay test. The results of the drug testing revealed that the IC50 value of zerumbone-loaded liposomes in HepG2 was 4.53 pM, which is greater than the IC50 value of zerumbone. The HepG2 cancer sphere's 3D platform for medication testing revealed that zerumbone-loaded liposomes were very effective at high doses. These findings generally imply that zerumbone-loaded liposomes have the capacity to target the liver and maintain medication delivery.

2.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37189495

RESUMO

Drug development is a complex and expensive process from new drug discovery to product approval. Most drug screening and testing rely on in vitro 2D cell culture models; however, they generally lack in vivo tissue microarchitecture and physiological functionality. Therefore, many researchers have used engineering methods, such as microfluidic devices, to culture 3D cells in dynamic conditions. In this study, a simple and low-cost microfluidic device was fabricated using Poly Methyl Methacrylate (PMMA), a widely available material, and the total cost of the completed device was USD 17.75. Dynamic and static cell culture examinations were applied to monitor the growth of 3D cells. α-MG-loaded GA liposomes were used as the drug to test cell viability in 3D cancer spheroids. Two cell culture conditions (i.e., static and dynamic) were also used in drug testing to simulate the effect of flow on drug cytotoxicity. Results from all assays showed that with the velocity of 0.005 mL/min, cell viability was significantly impaired to nearly 30% after 72 h in a dynamic culture. This device is expected to improve in vitro testing models, reduce and eliminate unsuitable compounds, and select more accurate combinations for in vivo testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...