Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(20): 5601-5612, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37822905

RESUMO

Two-dimensional metals stabilized at the interface between graphene and SiC are attracting considerable interest thanks to their intriguing physical properties, providing promising material platforms for quantum technologies. However, the nanoscale picture of the ultrathin metals within the interface that represents their ultimate two-dimensional limit has not been well captured. In this work, we explore the atomic structures and electronic properties of atomically thin indium intercalated at the epitaxial graphene/SiC interface by means of cryogenic scanning tunneling microscopy. Two types of surfaces with distinctive crystalline characteristics are found: (i) a triangular indium arrangement epitaxially matching the (√3 × âˆš3)R30° cell of the SiC substrate and (ii) a featureless surface of more complex atomic structures. Local tunneling spectroscopy reveals a varying n-type doping in the graphene capping layer induced by the intercalated indium and an occupied electronic state at ∼-1.1 eV that is attributed to the electronic structure of the newly formed interface. Tip-induced surface manipulation is used to alter the interfacial landscape; indium atoms are locally de-intercalated below graphene. This enables the quantitative measurement of the intercalation thickness revealing mono and bi-atomic layer indium within the interface and offers the capability to tune the number of metal layers such that a monolayer is converted irreversibly to a bilayer indium. Our findings demonstrate a scanning probe-based method for in-depth investigation of ultrathin metal at the atomic level, holding importance from both fundamental and technical viewpoints.

2.
Phys Rev Lett ; 123(6): 066801, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491176

RESUMO

We created hexagonal rings on a semiconductor surface by atom manipulation in a scanning tunneling microscope (STM). Our measurements reveal the generic level structure of a quantum ring, including its single ground state and doubly degenerate excited states. The ring shape leads to a periodic potential modulation and thereby a perturbation of the level structure that can be understood in analogy to band gap formation in a one-dimensional periodic potential. The modulation can be enhanced or inverted by further adding or removing atoms with the STM tip. Our results demonstrate the possibility of designing and controlling electron dynamics in a tunable periodic potential, holding promise for the construction of two-dimensional artificial lattices on a semiconductor surface.

3.
ACS Nano ; 11(11): 10742-10749, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28960959

RESUMO

The ability to trap adatoms with an organic molecule on a surface has been used to obtain a range of molecular functionalities controlled by the choice of the molecular trapping site and local deprotonation. The tetraphenylporphyrin molecule used in this study contains three types of trapping sites: two carbon rings (phenyl and pyrrole) and the center of a macrocycle. Catching a gold adatom on the carbon rings leads to an electronic doping of the molecule, whereas trapping the adatom at the macrocycle center with single deprotonation leads to a molecular rotor and a second deprotonation leads to a molecular jumper. We call "atom trapping chemistry" the control of the structure, electronic, and dynamical properties of a molecule achieved by trapping metallic atoms with a molecule on a surface. In addition to the examples previously described, we show that more complex structures can be envisaged.

4.
Sci Rep ; 6: 30316, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27453195

RESUMO

The highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Asia since 2003 and diversified into several genetic lineages, or clades. Although the spatial distribution of its outbreaks was extensively studied, differences in clades were never previously taken into account. We developed models to quantify associations over time and space between different HPAI H5N1 viruses from clade 1, 2.3.4 and 2.3.2 and agro-ecological factors. We found that the distribution of clades in the Mekong region from 2004 to 2013 was strongly regionalised, defining specific epidemiological zones, or epizones. Clade 1 became entrenched in the Mekong Delta and was not supplanted by newer clades, in association with a relatively higher presence of domestic ducks. In contrast, two new clades were introduced (2.3.4 and 2.3.2) in northern Viet Nam and were associated with higher chicken density and more intensive chicken production systems. We suggest that differences in poultry production systems in these different epizones may explain these associations, along with differences in introduction pressure from neighbouring countries. The different distribution patterns found at the clade level would not be otherwise apparent through analysis treating all outbreaks equally, which requires improved linking of disease outbreak records and genetic sequence data.


Assuntos
Genótipo , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Análise Espacial , Agricultura , Animais , Galinhas , Surtos de Doenças , Patos , Geografia , Filogenia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Fatores Socioeconômicos , Vietnã/epidemiologia
5.
Sci Rep ; 6: 24796, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097555

RESUMO

Graphene-based sensors are among the most promising of graphene's applications. The ability to signal the presence of molecular species adsorbed on this atomically thin substrate has been explored from electric measurements to light scattering. Here we show that the adsorbed molecules can be used to sense graphene properties. The interaction of porphyrin molecules with nitrogen-doped graphene has been investigated using scanning tunneling microscopy and ab initio calculations. Molecular manipulation was used to reveal the surface below the adsorbed molecules allowing to achieve an atomic-scale measure of the interaction of molecules with doped graphene. The adsorbate's frontier electronic states are downshifted in energy as the molecule approaches the doping site, with largest effect when the molecule sits over the nitrogen dopant. Theoretical calculations showed that, due to graphene's high polarizability, the adsorption of porphyrin induces a charge rearrangement on the substrate similar to the image charges on a metal. This charge polarization is enhanced around nitrogen site, leading to an increased interaction of molecules with their image charges on graphene. Consequently, the molecular states are stabilized and shift to lower energies. These findings reveal the local variation of polarizability induced by nitrogen dopant opening new routes towards the electronic tuning of graphene.

6.
J Phys Chem Lett ; 7(8): 1416-21, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27028149

RESUMO

Free-base porphyrin molecules offer appealing options to tune the interaction with their environment via the manipulation of their inner hydrogen atoms and molecular conformation. Using scanning tunneling microscopy we show, through a systematic study, that the molecular conformation, electronic gap, wave function, and molecule-substrate interaction are modified by hydrogen switch or removal. Experimental results in combination with ab initio calculations provide an understanding of the underlying physical process.

7.
ACS Nano ; 8(9): 9403-9, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25187965

RESUMO

The chemical doping of graphene is a promising route to improve the performances of graphene-based devices through enhanced chemical reactivity, catalytic activity, or transport characteristics. Understanding the interaction of molecules with doped graphene at the atomic scale is therefore a leading challenge to be overcome for the development of graphene-based electronics and sensors. Here, we use scanning tunneling microscopy and spectroscopy to study the electronic interaction of pristine and nitrogen-doped graphene with self-assembled tetraphenylporphyrin molecules. We provide an extensive measurement of the electronic structure of single porphyrins on Au(111), thus revealing an electronic decoupling effect of the porphyrins adsorbed on graphene. A tip-induced switching of the inner hydrogen atoms of porphyrins, first identified on Au(111), is observed on graphene, allowing the identification of the molecular conformation of porphyrins in the self-assembled molecular layer. On nitrogen-doped graphene, a local modification of the charge transfer around the nitrogen sites is evidenced via a downshift of the energies of the molecular elecronic states. These data show how the presence of nitrogen atoms in the graphene network modifies the electronic interaction of organic molecules with graphene. These results provide a basic understanding for the exploitation of doped graphene in molecular sensors or nanoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...