Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8422, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110450

RESUMO

RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating some fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA/genética , RNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/química , Espectroscopia de Ressonância Magnética , Corantes , Biologia
2.
Res Sq ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066235

RESUMO

RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.

3.
Commun Biol ; 5(1): 819, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970937

RESUMO

Productive transcriptional elongation of many cellular and viral mRNAs requires transcriptional factors to extract pTEFb from the 7SK snRNP by modulating the association between HEXIM and 7SK snRNA. In HIV-1, Tat binds to 7SK by displacing HEXIM. However, without the structure of the 7SK-HEXIM complex, the constraints that must be overcome for displacement remain unknown. Furthermore, while structure details of the TatNL4-3-7SK complex have been elucidated, it is unclear how subtypes with more HEXIM-like Tat sequences accomplish displacement. Here we report the structures of HEXIM, TatG, and TatFin arginine rich motifs in complex with the apical stemloop-1 of 7SK. While most interactions between 7SK with HEXIM and Tat are similar, critical differences exist that guide function. First, the conformational plasticity of 7SK enables the formation of three different base pair configurations at a critical remodeling site, which allows for the modulation required for HEXIM binding and its subsequent displacement by Tat. Furthermore, the specific sequence variations observed in various Tat subtypes all converge on remodeling 7SK at this region. Second, we show that HEXIM primes its own displacement by causing specific local destabilization upon binding - a feature that is then exploited by Tat to bind 7SK more efficiently.


Assuntos
HIV-1 , Proteínas de Ligação a RNA , HIV-1/genética , Conformação de Ácido Nucleico , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 9(1): 4266, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323330

RESUMO

The HIV Tat protein competes with the 7SK:HEXIM interaction to hijack pTEFb from 7SK snRNP and recruit it to the TAR motif on stalled viral transcripts. Here we solve structures of 7SK stemloop-1 and TAR in complex with Tat's RNA binding domain (RBD) to gain insights into this process. We find that 7SK is peppered with arginine sandwich motifs (ASM)-three classical and one with a pseudo configuration. Despite having similar RBDs, the presence of an additional arginine, R52, confers Tat the ability to remodel the pseudo configuration, required for HEXIM binding, into a classical sandwich, thus displacing HEXIM. Tat also uses R52 to remodel the TAR bulge into an ASM whose structure is identical to that of the remodeled ASM in 7SK. Together, our structures reveal a dual structural mimicry wherein viral Tat and TAR have co-opted structural motifs present in cellular HEXIM and 7SK for productive transcription of its genome.


Assuntos
Mimetismo Molecular , RNA Viral/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...