Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 5(2): 106-14, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24304333

RESUMO

Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic µ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by µ opioids in astrocytes involves crosstalk between three different classes of receptors, µ opioid receptor, EGFR and TGFßR. Moreover, TGFß1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFß1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic µ opioids, morphine, and the prototypic µ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFß1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that µ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, µ opioids may deter synaptogenesis via both TSP1/2 isoforms, but by distinct mechanisms.


Assuntos
Analgésicos Opioides/farmacologia , Astrócitos/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Morfina/farmacologia , Trombospondina 1/efeitos dos fármacos , Trombospondinas/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Fator Neurotrófico Ciliar/farmacologia , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Análise em Microsséries , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Ratos , Trombospondina 1/metabolismo , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
2.
J Virol ; 87(9): 5053-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427157

RESUMO

The folding and pentamer assembly of the simian virus 40 (SV40) major capsid protein Vp1, which take place in the infected cytoplasm, have been shown to progress through disulfide-bonded Vp1 folding intermediates. In this report, we further demonstrate the existence of another category of Vp1 folding or assembly intermediates: the nonreducible, covalently modified mdVp1s. These species were present in COS-7 cells that expressed a recombinant SV40 Vp1, Vp1ΔC, through plasmid transfection. The mdVp1s persisted under cell and lysate treatment and SDS-PAGE conditions that are expected to have suppressed the formation of artifactual disulfide cross-links. As shown through a pulse-chase analysis, the mdVp1s were derived from the newly synthesized Vp1ΔC in the same time frame as Vp1's folding and oligomerization. The apparent covalent modifications occurred in the cytoplasm within the core region of Vp1 and depended on the coexpression of the SV40 large T antigen (LT) in the cells. Analogous covalently modified species were found with the expression of recombinant polyomavirus Vp1s and human papillomavirus L1s in COS-7 cells. Furthermore, the mdVp1s formed multiprotein complexes with LT, Hsp70, and Hsp40, and a fraction of the largest mdVp1, md4, was disulfide linked to the unmodified Vp1ΔC. Both mdVp1 formation and most of the multiprotein complex formation were blocked by a Vp1 folding mutation, C87A-C254A. Our observations are consistent with a role for LT in facilitating the folding process of SV40 Vp1 by stimulating certain covalent modifications of Vp1 or by recruiting certain cellular proteins.


Assuntos
Antígenos Virais de Tumores/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Infecções por Polyomavirus/virologia , Vírus 40 dos Símios/metabolismo , Animais , Antígenos Virais de Tumores/genética , Células COS , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Humanos , Dobramento de Proteína , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...