Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(8): e0177802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771473

RESUMO

Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds' effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype.


Assuntos
Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Camundongos , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biofabrication ; 9(2): 025013, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28382922

RESUMO

Epithelial-adipose interaction is an integral step in breast cancer cell invasion and progression towards lethal metastatic disease. Understanding the physiological contribution of obesity, a major contributor to breast cancer risk and negative prognosis in post-menopausal patients, on cancer cell invasion requires detailed co-culture constructs that reflect mammary microarchitecture. Using laser direct-write, a laser-based CAD/CAM bioprinting technique, we have demonstrated the ability to construct breast cancer cell-laden hydrogel microbeads into spatially defined patterns in hydrogel matrices containing differentiated adipocytes. Z-stack imaging confirmed the three-dimensional nature of the constructs, as well as incorporation of cancer cell-laden microbeads into the adipose matrix. Preliminary data was gathered to support the construct as a potential model for breast cancer cell invasion into adipose tissue. MCF-7 and MDA-MB-231 breast cancer cell invasion was tracked over 2 weeks in an optically transparent hydrogel scaffold in the presence of differentiated adipocytes obtained from normal weight or obese patient tissue. Our model successfully integrates adipocytes and gives us the potential to study cellular and tissue-level interactions towards the early detection of cancer cell invasion into adipose tissue.


Assuntos
Adipócitos/citologia , Biomimética , Lasers , Modelos Biológicos , Alicerces Teciduais/química , Adipócitos/metabolismo , Alginatos/química , Bioimpressão , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Colágeno/química , Desenho Assistido por Computador , Transição Epitelial-Mesenquimal , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Células MCF-7 , Microscopia Eletrônica de Varredura
3.
J Cell Physiol ; 231(11): 2333-8, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26923437

RESUMO

Investigation into the mechanisms driving cancer cell behavior and the subsequent development of novel targeted therapeutics requires comprehensive experimental models that mimic the complexity of the tumor microenvironment. Recently, our laboratories have combined a novel tissue culture model and laser direct-write, a form of bioprinting, to spatially position single or clustered cancer cells onto ex vivo microvascular networks containing blood vessels, lymphatic vessels, and interstitial cell populations. Herein, we highlight this new model as a tool for quantifying cancer cell motility and effects on angiogenesis and lymphangiogenesis in an intact network that matches the complexity of a real tissue. Application of our proposed methodology offers an innovative ex vivo tissue perspective for evaluating the effects of gene expression and targeted molecular therapies on cancer cell migration and invasion. J. Cell. Physiol. 231: 2333-2338, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Movimento Celular , Lasers , Modelos Biológicos , Neoplasias/patologia , Especificidade de Órgãos , Animais , Bioimpressão , Humanos , Ratos , Imagem com Lapso de Tempo
4.
Integr Biol (Camb) ; 7(9): 1068-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26190039

RESUMO

While cancer cell invasion and metastasis are dependent on cancer cell-stroma, cancer cell-blood vessel, and cancer cell-lymphatic vessel interactions, our understanding of these interactions remain largely unknown. A need exists for physiologically-relevant models that more closely mimic the complexity of cancer cell dynamics in a real tissue environment. The objective of this study was to combine laser-based cell printing and tissue culture methods to create a novel ex vivo model in which cancer cell dynamics can be tracked during angiogenesis in an intact microvascular network. Laser direct-write (LDW) was utilized to reproducibly deposit breast cancer cells (MDA-MB-231 and MCF-7) and fibroblasts into spatially-defined patterns on cultured rat mesenteric tissues. In addition, heterogeneous patterns containing co-printed MDA-MB-231/fibroblasts or MDA-MB-231/MCF-7 cells were generated for fibroblast-directed and collective cell invasion models. Printed cells remained viable and the cells retained the ability to proliferate in serum-rich media conditions. Over a culture period of five days, time-lapse imaging confirmed fibroblast and MDA-MB-231 cell migration within the microvascular networks. Confocal microscopy indicated that printed MDA-MB-231 cells infiltrated the tissue thickness and were capable of interacting with endothelial cells. Angiogenic network growth in tissue areas containing printed cancer cells was characterized by significantly increased capillary sprouting compared to control tissue areas containing no printed cells. Our results establish an innovative ex vivo experimental platform that enables time-lapse evaluation of cancer cell dynamics during angiogenesis within a real microvascular network scenario.


Assuntos
Separação Celular/instrumentação , Microvasos/fisiopatologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Animais , Movimento Celular , Separação Celular/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Células MCF-7 , Mesentério/fisiopatologia , Invasividade Neoplásica , Impressão Tridimensional/estatística & dados numéricos , Ratos
5.
Breast Cancer Res Treat ; 145(3): 593-604, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24810497

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Proteínas de Homeodomínio/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Proteínas de Homeodomínio/biossíntese , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Invasividade Neoplásica/patologia , Metástase Neoplásica/tratamento farmacológico , Panobinostat , Proteínas Repressoras/biossíntese , Fatores de Transcrição/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
6.
Biofabrication ; 4(2): 025006, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22556116

RESUMO

Fabrication of heterogeneous microbead patterns on a bead-by-bead basis promotes new opportunities for sensors, lab-on-a-chip technology and cell-culturing systems within the context of customizable constructs. Laser direct-write (LDW) was utilized to target and deposit solid polystyrene and stem cell-laden alginate hydrogel beads into computer-programmed patterns. We successfully demonstrated single-bead printing resolution and fabricated spatially-ordered patterns of microbeads. The probability of successful microbead transfer from the ribbon surface increased from 0 to 80% with decreasing diameter of 600 to 45 µm, respectively. Direct-written microbeads retained spatial pattern registry, even after 10 min of ultrasonication treatment. SEM imaging confirmed immobilization of microbeads. Viability of cells encapsulated in transferred hydrogel microbeads achieved 37 ± 11% immediately after the transfer process, whereas randomly-patterned pipetted control beads achieved a viability of 51 ± 25%. Individual placement of >10 µm diameter microbeads onto planar surfaces has previously been unattainable. We have demonstrated LDW as a valuable tool for the patterning of single, micrometer-diameter beads into spatially-ordered patterns.


Assuntos
Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Lasers , Microesferas , Adsorção , Alginatos/química , Animais , Adesão Celular , Sobrevivência Celular , Células-Tronco Embrionárias/citologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Microscopia de Contraste de Fase , Tamanho da Partícula , Poliestirenos/química
7.
Immunity ; 27(1): 111-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17629517

RESUMO

Pathways in the B7:CD28 family of costimulatory molecules regulate T cell activation and tolerance. B7-dependent responses in Cd28(-/-)Ctla4(-/-) T cells together with reports of stimulatory and inhibitory functions for Programmed Death-1 Ligand 1 or 2 molecules (PD-L1 or PD-L2) have suggested additional receptors for these B7 family members. We show that B7-1 and PD-L1 interacted with affinity intermediate to that of B7-1:CD28 and B7-1:CTLA-4. The PD-L1:B7-1 interface overlapped with the B7-1:CTLA-4 and PD-L1:PD-1 (Programmed Death-1) interfaces. T cell activation and cytokine production were inhibited by the interaction of B7-1 with PD-L1. The responses of PD-1-deficient versus PD-1,B7-1 double-deficient T cells to PD-L1 and of CD28,CTLA-4 double-deficient versus CD28,CTLA-4,PD-L1 triple-deficient T cells to B7-1 demonstrated that PD-L1 and B7-1 interact specifically to inhibit T cell activation. Our findings point to a substantial bidirectional inhibitory interaction between B7-1 and PD-L1 and add an additional dimension to immunoregulatory functions of the B7:CD28 family.


Assuntos
Antígeno B7-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígeno B7-1/genética , Antígeno B7-1/fisiologia , Antígeno B7-H1 , Células COS , Linhagem Celular , Proliferação de Células , Células Cultivadas , Chlorocebus aethiops , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Humanos , Ligantes , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/deficiência , Peptídeos/fisiologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...