Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2223-2234, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297757

RESUMO

The biphenylene network (BPN) has a unique two-dimensional atomic structure, where hexagonal unit cells are arranged on a square lattice. Inspired by such a BPN structure, we design a counterpart in the fashion of photonic crystals (PhCs), which we refer to as the BPN PhC. We study the photonic band structure using the finite element method and characterize the topological properties of the BPN PhC through the use of the Wilson loop. Our findings reveal the emergence of topological edge states in the BPN PhC, specifically in the zigzag edge and the chiral edge, as a consequence of the nontrivial Zak phase in the corresponding directions. In addition, we find the localization of electromagnetic waves at the corners formed by the chiral edges, which can be considered as second-order topological states, i.e., topological corner states.

2.
Mol Metab ; 73: 101737, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182562

RESUMO

OBJECTIVE: To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS: We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS: We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS: We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.


Assuntos
Intestinos , Metabolismo dos Lipídeos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , Macrófagos/metabolismo , Doença de Wolman
3.
Appl Soft Comput ; 139: 110235, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36999094

RESUMO

The emergence of various social networks has generated vast volumes of data. Efficient methods for capturing, distinguishing, and filtering real and fake news are becoming increasingly important, especially after the outbreak of the COVID-19 pandemic. This study conducts a multiaspect and systematic review of the current state and challenges of graph neural networks (GNNs) for fake news detection systems and outlines a comprehensive approach to implementing fake news detection systems using GNNs. Furthermore, advanced GNN-based techniques for implementing pragmatic fake news detection systems are discussed from multiple perspectives. First, we introduce the background and overview related to fake news, fake news detection, and GNNs. Second, we provide a GNN taxonomy-based fake news detection taxonomy and review and highlight models in categories. Subsequently, we compare critical ideas, advantages, and disadvantages of the methods in categories. Next, we discuss the possible challenges of fake news detection and GNNs. Finally, we present several open issues in this area and discuss potential directions for future research. We believe that this review can be utilized by systems practitioners and newcomers in surmounting current impediments and navigating future situations by deploying a fake news detection system using GNNs.

4.
Phytopathology ; 113(7): 1180-1184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809076

RESUMO

ToxA is one of the most studied proteinaceous necrotrophic effectors produced by plant pathogens. It has been identified in four pathogens (Pyrenophora tritici-repentis, Parastagonospora nodorum, Parastagonospora pseudonodorum [formerly Parastagonospora avenaria f. sp. tritici], and Bipolaris sorokiniana) causing leaf spot diseases on cereals worldwide. To date, 24 different ToxA haplotypes have been identified. Some P. tritici-repentis and related species also express ToxB, another small protein necrotrophic effector. We present here a revised and standardized nomenclature for these effectors, which could be extended to other poly-haplotypic genes found across multiple species.


Assuntos
Proteínas Fúngicas , Micotoxinas , Haplótipos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Micotoxinas/genética
5.
PLoS Pathog ; 18(1): e1010149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990464

RESUMO

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Micoses/genética , Doenças das Plantas/genética , Triticum/microbiologia , Resistência à Doença/genética , Suscetibilidade a Doenças , Epistasia Genética/genética , Interações Hospedeiro-Patógeno/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Virulência/genética
6.
Int J Med Sci ; 18(14): 3206-3213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400890

RESUMO

Twin-twin transfusion syndrome (TTTS) is an unusual and serious condition that occurs in twin pregnancies when identical twins share a placenta but develop discordant amniotic fluid volumes. TTTS is associated with an increased risk of fetal death and birth defects if untreated. This study investigated the soluble levels of biomarkers including growth factors and interleukins in pregnant women with and without TTTS during pregnancy. We quantified plasma levels of VEGF-R1, VEGF-R2, IL-1ß, IL-6 and IL-8 in twin pregnant women with (n=53) and without TTTS (n=72) and in women with single pregnancy (n=30) by ELISA and analyzed the association of maternal circulating biomarker levels with TTTS. Our results showed that maternal VEGF-R1 levels were significantly higher in twins compared to single pregnancy (P<0.05) and were decreased in the second trimester compared to the first trimester (P = 0.065, 0.019 and 0.072 for twins with and without TTTS and single pregnancy, respectively). VEGF-R2 levels had a trend to be lower in twins compared to single pregnancy. In addition, soluble VEGF-R1 and VEGF-R2 levels were significantly decreased while IL-6 levels were increased after surgical treatment with laser in twin pregnant women with TTTS (P = 0.016, 0.041 and 0.04, respectively). These results suggest that IL-6, VEGF-R1 and VEGF-R2 are involved in vascular regulation and stabilization in twin pregnancies and may contribute to the pathogenesis of TTTS and thus play a prognostic role in the surgical treatment of TTTS.


Assuntos
Transfusão Feto-Fetal/diagnóstico , Interleucina-6/sangue , Gravidez de Gêmeos/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Adulto , Biomarcadores/sangue , Feminino , Transfusão Feto-Fetal/cirurgia , Humanos , Interleucina-1beta/sangue , Interleucina-6/metabolismo , Interleucina-8/sangue , Placenta/irrigação sanguínea , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/sangue , Prognóstico , Gêmeos Monozigóticos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
7.
Opt Express ; 29(12): 18277-18290, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154086

RESUMO

We study topological states of honeycomb photonic crystals in the absence of inversion symmetry using plane wave expansion and finite element methods. The breaking of inversion symmetry in honeycomb lattice leads to contrasting topological valley indices, i.e., the valley-dependent Chern numbers in momentum space. We find that the topological corner states appear for 60° degree corners, but absent for other corners, which can be understood as the sign flip of valley Chern number at the corner. Our results provide an experimentally feasible platform for exploring valley-dependent higher-order topology in photonic systems.

8.
BMC Genomics ; 22(1): 382, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034667

RESUMO

BACKGROUND: The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised - ToxA, Tox1 and Tox3. RESULTS: A chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions. CONCLUSIONS: We present an updated series of genomic resources for P. nodorum Sn15 - an important reference isolate and model necrotroph - with a comprehensive survey of its predicted pathogenicity content.


Assuntos
Doenças das Plantas , Proteoma , Ascomicetos , Austrália , Cromossomos , Doenças das Plantas/genética , Virulência/genética
9.
Sci Rep ; 11(1): 10085, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980869

RESUMO

The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by multiple interactions between necrotrophic effectors secreted by the pathogen and matching susceptibility genes in wheat. An Australian P. nodorum population was clustered into five groups with contrasting properties. This study was set to identify their pathogenicity profiles using a diverse wheat panel of 134 accessions which are insensitive to SnToxA and SnTox1 in both in vitro and in vivo conditions. SNB seedling resistance/susceptibility to five representative isolates from the five clusters, responses to crude culture-filtrates (CFs) of three isolates and sensitivity to SnTox3 semi-purified effector together with 11,455 SNP markers have been used for linkage disequilibrium (LD) and association analyses. While quantitative trait loci (QTL) on 1D, 2A, 2B, 4B, 5B, 6A, 6B, 7A, 7D chromosomes were consistently detected across isolates and conditions, distinct patterns and isolate specific QTL were also observed among these isolates. In this study, SnTox3-Snn3-B1 interaction for the first time in Australia and SnTox3-Snn3-D1 interaction for the first time in bread wheat were found active using wild-type isolates. These findings could be due to new SnTox3 haplotype/isoform and exotic CIMMYT/ICARDA and Vavilov germplasm used, respectively. This study could provide useful information for dissecting novel and different SNB disease components, helping to prioritise research targets and contributing valuable information on genetic loci/markers for marker-assisted selection in SNB resistance wheat breeding programme.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Austrália , Genoma Fúngico , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia , Virulência
10.
Phytopathology ; 111(6): 906-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33245254

RESUMO

The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.


Assuntos
Doenças das Plantas , Triticum , Ascomicetos , Gerenciamento Clínico , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
11.
Arch Virol ; 165(12): 2973-2977, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886215

RESUMO

The bacteriophage vB_AhM_PVN02 (PVN02), infecting Aeromonas hydrophila, was isolated from a striped catfish pond water sample in Can Tho City, Vietnam. The phage had high lytic activity with a latent period and burst size of approximately 20 min and 105 plaque-forming units per cell, respectively. Observation of the phage by transmission electron microscopy indicated that PVN02 belongs to the family Myoviridae. The genome of PVN02 is a double-stranded linear DNA with a length in 51,668 bp and a content of 52% GC. Among the 64 genes, 16 were predicted to encode proteins with predicted functions. No virulence or antibiotic resistance genes were found in the genome, suggesting it would be a useful biocontrol agent. Classification of the phage based on sequence comparisons, phylogenetic analysis, and gene-sharing networks was carried out, and it was found to be the first representative of a new species within a previously undefined genus in the family Myoviridae. This study confirmed that PVN02 is a novel lytic phage that could potentially be used as an agent to control Aeromonas hydrophila in striped catfish in the Mekong Delta, Vietnam.


Assuntos
Aeromonas hydrophila/virologia , Peixes-Gato/microbiologia , Myoviridae/genética , Filogenia , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Genômica , Vietnã , Sequenciamento Completo do Genoma
12.
Sci Rep ; 9(1): 15884, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685928

RESUMO

The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Motivos de Aminoácidos , Ascomicetos/patogenicidade , Parede Celular/metabolismo , Regulação para Baixo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Análise de Componente Principal , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Triticum/microbiologia , Regulação para Cima , Virulência/genética
13.
Plant Genome ; 12(3): 1-15, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016591

RESUMO

CORE IDEAS: First genome-wide association mapping of adult plant Septoria nodorum blotch resistance. Some adult plant resistance loci were shared with seedling resistance loci. Other adult plant resistance loci were significant across environments. Resistant haplotypes were identified, which can be used for breeding. Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE-Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.


Assuntos
Estudo de Associação Genômica Ampla , Triticum/genética , Fenótipo , Doenças das Plantas/genética , Estações do Ano
14.
Front Plant Sci ; 10: 1785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082346

RESUMO

INTRODUCTION: Septoria nodorum blotch (SNB) is a complex fungal disease of wheat caused by the Dothideomycete fungal pathogen Parastagonospora nodorum. The fungus infects through the use of necrotrophic effectors (NEs) that cause necrosis on hosts carrying matching dominant susceptibility genes. The Western Australia (WA) wheatbelt is a SNB "hot spot" and experiences significant under favorable conditions. Consequently, SNB has been a major target for breeders in WA for many years. MATERIALS AND METHODS: In this study, we assembled a panel of 155 WA P. nodorum isolates collected over a 44-year period and compared them to 23 isolates from France and the USA using 28 SSR loci. RESULTS: The WA P. nodorum population was clustered into five groups with contrasting properties. 80% of the studied isolates were assigned to two core groups found throughout the collection location and time. The other three non-core groups that encompassed transient and emergent populations were found in restricted locations and time. Changes in group genotypes occurred during periods that coincided with the mass adoption of a single or a small group of widely planted wheat cultivars. When introduced, these cultivars had high scores for SNB resistance. However, the field resistance of these new cultivars often declined over subsequent seasons prompting their replacement with new, more resistant varieties. Pathogenicity assays showed that newly emerged isolates non-core are more pathogenic than old isolates. It is likely that the non-core groups were repeatedly selected for increased virulence on the contemporary popular cultivars. DISCUSSION: The low level of genetic diversity within the non-core groups, difference in virulence, low abundance, and restriction to limited locations suggest that these populations more vulnerable to a population crash when the cultivar was replaced by one that was genetically different and more resistant. We characterize the observed pattern as a low-amplitude boom-and-bust cycle in contrast with the classical high amplitude boom-and-bust cycles seen for biotrophic pathogens where the contrast between resistance and susceptibility is typically much greater. Implications of the results are discussed relating to breeding strategies for more sustainable SNB resistance and more generally for pathogens with NEs.

15.
Front Plant Sci ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022985

RESUMO

Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.

16.
Theor Appl Genet ; 131(6): 1223-1238, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29470621

RESUMO

KEY MESSAGE: The fungus Parastagonospora nodorum causes Septoria nodorum blotch (SNB) of wheat. A genetically diverse wheat panel was used to dissect the complexity of SNB and identify novel sources of resistance. The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector-host sensitivity gene interactions that include SnToxA-Tsn1, SnTox1-Snn1, and SnTox3-Snn3. A P. nodorum strain lacking SnToxA, SnTox1, and SnTox3 (toxa13) retained wild-type-like ability to infect some modern wheat cultivars, suggesting evidence of other effector-mediated susceptibility gene interactions or the lack of host resistance genes. To identify genomic regions harbouring such loci, we examined a panel of 295 historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia, which is comprised of genetically diverse landraces and breeding lines registered from 1920 to 1990. The wheat panel was subjected to effector bioassays, infection with P. nodorum wild type (SN15) and toxa13. In general, SN15 was more virulent than toxa13. Insensitivity to all three effectors contributed significantly to resistance against SN15, but not toxa13. Genome-wide association studies using phenotypes from SN15 infection detected quantitative trait loci (QTL) on chromosomes 1BS (Snn1), 2DS, 5AS, 5BS (Snn3), 3AL, 4AL, 4BS, and 7AS. For toxa13 infection, a QTL was detected on 5AS (similar to SN15), plus two additional QTL on 2DL and 7DL. Analysis of resistance phenotypes indicated that plant breeders may have inadvertently selected for effector insensitivity from 1940 onwards. We identify accessions that can be used to develop bi-parental mapping populations to characterise resistance-associated alleles for subsequent introgression into modern bread wheat to minimise the impact of SNB.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Epistasia Genética , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Genótipo , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
17.
Mol Plant Pathol ; 18(3): 420-434, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27860150

RESUMO

The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Sequência Conservada , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Especificidade de Hospedeiro/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Ascomicetos/crescimento & desenvolvimento , Epistasia Genética , Proteínas Fúngicas/genética , Deleção de Genes , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Virulência/genética , Dedos de Zinco
18.
Plant J ; 87(4): 343-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133896

RESUMO

Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.


Assuntos
Ascomicetos/genética , Epistasia Genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/microbiologia , Triticum/metabolismo , Triticum/microbiologia
19.
G3 (Bethesda) ; 5(11): 2257-66, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416667

RESUMO

The necrotrophic fungus Parastagonospora nodorum is an important pathogen of one of the world's most economically important cereal crops, wheat (Triticum aestivum L.). P. nodorum produces necrotrophic protein effectors that mediate host cell death, providing nutrients for continuation of the infection process. The recent discovery of pathogen effectors has revolutionized disease resistance breeding for necrotrophic diseases in crop species, allowing often complex genetic resistance mechanisms to be broken down into constituent parts. To date, three effectors have been identified in P. nodorum. Here we use the effector, SnTox1, to screen 642 progeny from an eight-parent multiparent advanced generation inter-cross (i.e., MAGIC) population, genotyped with a 90,000-feature single-nucleotide polymorphism array. The MAGIC founders showed a range of sensitivity to SnTox1, with transgressive segregation evident in the progeny. SnTox1 sensitivity showed high heritability, with quantitative trait locus analyses fine-mapping the Snn1 locus to the short arm of chromosome 1B. In addition, a previously undescribed SnTox1 sensitivity locus was identified on the long arm of chromosome 5A, termed here QSnn.niab-5A.1. The peak single-nucleotide polymorphism for the Snn1 locus was converted to the KASP genotyping platform, providing breeders and researchers a simple and cheap diagnostic marker for allelic state at Snn1.


Assuntos
Resistência à Doença/genética , Loci Gênicos , Hibridização Genética , Triticum/genética , Ascomicetos/patogenicidade , Cromossomos de Plantas/genética , Ligação Genética , Micotoxinas/toxicidade , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
20.
Front Plant Sci ; 6: 501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217355

RESUMO

Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10-20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breeders to improve the resistance of cultivars has been compromised by the universal finding that resistance was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a limited effect that was hard to measure precisely and varied significantly from site to site and season to season. The discovery of necrotrophic effectors has given breeding for disease resistance new methods and tools. In the case of tan spot in West Australia, a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar choice and breeding strategies. For P. nodorum, three effectors - SnToxA, SnTox1, and SnTox3 - have been well characterized. Unlike tan spot, no one effector has a dominating role. Genetic analysis of various mapping populations and pathogen isolates has shown that different effectors have varying impact and that epistatic interactions also occur. As a result of these factors the deployment of these effectors for SNB resistance breeding is more complex. We have deleted the three effectors in a strain of P. nodorum and measured effector activity and disease potential of the triple knockout mutant. The culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit the overall levels are less than in the wild type. Modeling of the field disease resistance scores of cultivars from their reactions to the microbially expressed effectors SnToxA, SnTox1, and SnTox3 is significantly improved by including the response to the triple knockout mutant culture filtrate. This indicates that one or more further effectors are secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic effectors explain a very large part of the disease response of wheat germplasm and that this method of resistance breeding promises to further reduce the impact of these globally significant diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...