Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787785

RESUMO

Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that impaired nuclear proteostasis may contribute to MSP, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.

2.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993559

RESUMO

Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four novel compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that MSP may be the result of impaired nuclear proteostasis, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.

3.
Curr HIV/AIDS Rep ; 19(6): 600-609, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156183

RESUMO

PURPOSE OF REVIEW: This review summarizes technology-based interventions for HIV in low- and middle-income countries (LMICs). We highlight potential benefits and challenges to using telehealth in LMICs and propose areas for future study. RECENT FINDINGS: We identified several models for using telehealth to expand HIV health care access in LMICs, including telemedicine visits for pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART) services, telementoring programs for providers, and virtual peer-support groups. Emerging data support the acceptability and feasibility of these strategies. However, further investigations are needed to determine whether these models are scalable and sustainable in the face of barriers related to cost, infrastructure, and regulatory approval. HIV telehealth interventions may be a valuable approach to addressing gaps along the HIV care cascade in LMICs. Future studies should focus on strategies for expanding existing programs to scale and for assessing long-term clinical outcomes.


Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Telemedicina , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Países em Desenvolvimento , Antirretrovirais/uso terapêutico
4.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33004675

RESUMO

Neurodegeneration in Alzheimer's disease (AD) is closely associated with the accumulation of pathologic tau aggregates in the form of neurofibrillary tangles. We found that a p.Asp395Gly mutation in VCP (valosin-containing protein) was associated with dementia characterized neuropathologically by neuronal vacuoles and neurofibrillary tangles. Moreover, VCP appeared to exhibit tau disaggregase activity in vitro, which was impaired by the p.Asp395Gly mutation. Additionally, intracerebral microinjection of pathologic tau led to increased tau aggregates in mice in which p.Asp395Gly VCP mice was knocked in, as compared with injected wild-type mice. These findings suggest that p.Asp395Gly VCP is an autosomal-dominant genetic mutation associated with neurofibrillary degeneration in part owing to reduced tau disaggregation, raising the possibility that VCP may represent a therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Proteína com Valosina/metabolismo , Proteínas tau/metabolismo , Animais , Ácido Aspártico/genética , Técnicas de Introdução de Genes , Genes Dominantes , Glicina/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteína com Valosina/genética
5.
Cell Rep ; 27(5): 1409-1421.e6, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042469

RESUMO

Loss of the nuclear RNA binding protein TAR DNA binding protein-43 (TDP-43) into cytoplasmic aggregates is the strongest correlate to neurodegeneration in amyotrophic lateral sclerosis and frontotemporal degeneration. The molecular changes associated with the loss of nuclear TDP-43 in human tissues are not entirely known. Using subcellular fractionation and fluorescent-activated cell sorting to enrich for diseased neuronal nuclei without TDP-43 from post-mortem frontotemporal degeneration-amyotrophic lateral sclerosis (FTD-ALS) human brain, we characterized the effects of TDP-43 loss on the transcriptome and chromatin accessibility. Nuclear TDP-43 loss is associated with gene expression changes that affect RNA processing, nucleocytoplasmic transport, histone processing, and DNA damage. Loss of nuclear TDP-43 is also associated with chromatin decondensation around long interspersed nuclear elements (LINEs) and increased LINE1 DNA content. Moreover, loss of TDP-43 leads to increased retrotransposition that can be inhibited with antiretroviral drugs, suggesting that TDP-43 neuropathology is associated with altered chromatin structure including decondensation of LINEs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Elementos Nucleotídeos Longos e Dispersos , Transporte Ativo do Núcleo Celular , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Cromatina/química , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Demência Frontotemporal/metabolismo , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , Transcriptoma
6.
J Neurosci ; 38(18): 4288-4300, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29632166

RESUMO

HIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer's disease (AD), which is characterized by amyloid-ß (Aß) plaques. Plaques are formed by aggregation of Aß oligomers, which may be the toxic species in AD pathogenesis, and oligomers are generated by cleavage of amyloid precursor protein (APP) by ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD. Although studies have also found evidence of altered APP processing in HIV+ patients, it is unknown whether increased BACE1 expression or Aß oligomer production is a common neuropathological feature of HAND. Moreover, it is unknown whether BACE1 or APP is involved in the excitotoxic, NMDAR-dependent component of HIV-associated neurotoxicity in vitro Herein, we hypothesize that HIV-associated neurotoxicity is mediated by NMDAR-dependent elevation of BACE1 and subsequent altered processing of APP. Supporting this, we observed elevated levels of BACE1 and Aß oligomers in CNS of male and female HIV+ patients. In a model of HIV-associated neurotoxicity in which rat neurons are treated with supernatants from HIV-infected human monocyte-derived macrophages, we observed NMDAR-dependent elevation of BACE1 protein. NMDA treatment also increased BACE1 and both pharmacological BACE1 inhibition and genetic loss of APP were partially neuroprotective. Moreover, in APP knock-out (APP-/-) mouse neurons, NMDA-induced toxicity was BACE1 independent, indicating that cytotoxicity of BACE1 is dependent upon APP cleavage. Our findings suggest that increased BACE1 and the resultant Aß oligomer production may contribute to HIV-associated neuropathogenesis and inhibition of BACE1 could have therapeutic potential in HANDs.SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HANDs) represent a range of cognitive impairments affecting ∼50% of HIV+ individuals. The specific causes of HAND are unknown, but evidence suggests that HIV-infected macrophage infiltration into the brain may cause neuronal damage. Herein, we show that neurons treated with conditioned media from HIV-infected macrophages have increased expression of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein implicated in Alzheimer's disease pathogenesis. Moreover, inhibition of BACE1 prevented neuronal loss after conditioned media exposure, but had no effect on HIV-associated neurotoxicity in neurons lacking its cleavage target amyloid precursor protein. We also observed increased BACE1 expression in HIV+ patient brain tissue, confirming the potential relevance of BACE1 as a therapeutic target in HANDs.


Assuntos
Complexo AIDS Demência/genética , Complexo AIDS Demência/patologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Infecções por HIV/patologia , Neurônios/patologia , Adulto , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Hipocampo/metabolismo , Humanos , Macrófagos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , N-Metilaspartato/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...