Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 413: 113466, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271036

RESUMO

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by impairments in social interaction, cognition, and communication, as well as the presence of repetitive or stereotyped behaviors and interests. ASD is most often studied as a neurodevelopmental disease, but it is a lifelong disorder. Adults with ASD experience more stressful life events and greater perceived stress, and frequently have comorbid mood disorders such as anxiety and depression. It remains unclear whether adult exposure to chronic stress can exacerbate the behavioral and neurodevelopmental phenotypes associated with ASD. To address this issue, we first investigated whether adult male and female Engrailed-2 deficient (En2-KO, En2-/-) mice, which display behavioral disturbances in avoidance tasks and dysregulated monoaminergic neurotransmitter levels, also display impairments in instrumental behaviors associated with motivation, such as the progressive ratio task. We then exposed adult En2-KO mice to chronic environmental stress (CSDS, chronic social defeat stress), to determine if stress exacerbated the behavioral and neuroanatomical effects of En2 deletion. En2-/- mice showed impaired instrumental acquisition and significantly lower breakpoints in a progressive ratio test, demonstrating En2 deficiency decreases motivation to exert effort for reward. Furthermore, adult CSDS exposure increased avoidance behaviors in En2-KO mice. Interestingly, adult CSDS exposure also exacerbated the deleterious effects of En2 deficiency on forebrain-projecting monoaminergic fibers. Our findings thus suggest that adult exposure to stress may exacerbate behavioral and neuroanatomical phenotypes associated with developmental effects of genetic En2 deficiency.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Interação Gene-Ambiente , Motivação/fisiologia , Proteínas do Tecido Nervoso/deficiência , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio , Masculino , Camundongos
2.
Transl Psychiatry ; 10(1): 396, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177511

RESUMO

Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hormônio Liberador da Corticotropina , Núcleos Septais , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Privação Materna , Núcleos Septais/metabolismo
3.
Front Syst Neurosci ; 11: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928640

RESUMO

Epigenetic mechanisms that modify chromatin conformation have recently been under investigation for their contributions to learning and the formation of memory. For example, the role of enzymes involved in histone acetylation are studied in the formation of long-lasting memories because memory consolidation requires gene expression events that are facilitated by an open state of chromatin. We recently proposed that epigenetic events may control the entry of specific sensory features into long-term memory by enabling transcription-mediated neuronal plasticity in sensory brain areas. Histone deacetylases, like HDAC3, may thereby regulate the specific sensory information that is captured for entry into long-term memory stores (Phan and Bieszczad, 2016). To test this hypothesis, we used an HDAC3-selective inhibitor (RGFP966) to determine whether its application after an experience with a sound stimulus with unique acoustic features could contribute to the formation of a memory that would assist in mediating its later recognition. We gave adult male zebra finches limited exposure to unique conspecific songs (20 repetitions each, well below the normal threshold to form long-term memory), followed by treatment with RGFP966 or vehicle. In different groups, we either made multi-electrode recordings in the higher auditory area NCM (caudal medial nidopallidum), or determined expression of an immediate early gene, zenk (also identified as zif268, egr-1, ngfi-a and krox24), known to participate in neuronal memory in this system. We found that birds treated with RGFP966 showed neuronal memory after only limited exposure, while birds treated with vehicle did not. Strikingly, evidence of neuronal memory in NCM induced by HDAC3-inhibition was lateralized to the left-hemisphere, consistent with our finding that RGFP966-treatment also elevated zenk expression only in the left hemisphere. The present findings show feasibility for epigenetic mechanisms to control neural plasticity underlying the formation of specific memories for conspecific communication sounds. This is the first evidence in zebra finches that epigenetic mechanisms may contribute to gene expression events for memory of acoustically-rich sensory cues.

4.
Neural Plast ; 2016: 7254297, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881129

RESUMO

Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.


Assuntos
Córtex Cerebral/fisiologia , Epigênese Genética , Memória/fisiologia , Plasticidade Neuronal , Animais , Córtex Cerebral/metabolismo , Metilação de DNA , Humanos , Neurônios/metabolismo , Neurônios/fisiologia
5.
Dev Neurobiol ; 75(3): 302-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25220950

RESUMO

Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus-specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus-specific adaptation compared to males reared in the same paradigm (n = 9). In hormone-manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients.


Assuntos
Percepção Auditiva/fisiologia , Música , Prosencéfalo/fisiologia , Caracteres Sexuais , Vocalização Animal/fisiologia , Estimulação Acústica/métodos , Fatores Etários , Animais , Estradiol/metabolismo , Feminino , Tentilhões , Masculino , Memória/fisiologia
6.
J Neurophysiol ; 113(5): 1480-92, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25475353

RESUMO

How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions.


Assuntos
Percepção Auditiva , Discriminação Psicológica , Aprendizagem , Prosencéfalo/fisiologia , Vocalização Animal , Adaptação Fisiológica , Animais , Tentilhões , Masculino , Neurônios/fisiologia , Prosencéfalo/citologia , Tempo de Reação
7.
PLoS One ; 9(9): e108929, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251077

RESUMO

Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.


Assuntos
Aves/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Audição , Aprendizagem , Memória , Neurônios/citologia , Fala , Comunicação Animal , Animais , Encéfalo/citologia
8.
Proc Natl Acad Sci U S A ; 107(5): 2301-6, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133876

RESUMO

An intriguing phenomenon in the neurobiology of language is lateralization: the dominant role of one hemisphere in a particular function. Lateralization is not exclusive to language because lateral differences are observed in other sensory modalities, behaviors, and animal species. Despite much scientific attention, the function of lateralization, its possible dependence on experience, and the functional implications of such dependence have yet to be clearly determined. We have explored the role of early experience in the development of lateralized sensory processing in the brain, using the songbird model of vocal learning. By controlling exposure to natural vocalizations (through isolation, song tutoring, and muting), we manipulated the postnatal auditory environment of developing zebra finches, and then assessed effects on hemispheric specialization for communication sounds in adulthood. Using bilateral multielectrode recordings from a forebrain auditory area known to selectively process species-specific vocalizations, we found that auditory responses to species-typical songs and long calls, in both male and female birds, were stronger in the right hemisphere than in the left, and that right-side responses adapted more rapidly to stimulus repetition. We describe specific instances, particularly in males, where these lateral differences show an influence of auditory experience with song and/or the bird's own voice during development.


Assuntos
Tentilhões/fisiologia , Lateralidade Funcional/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Feminino , Tentilhões/crescimento & desenvolvimento , Aprendizagem/fisiologia , Masculino , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/fisiologia
9.
J Neurophysiol ; 100(1): 441-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18480371

RESUMO

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA A-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA A-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA A receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA A-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Vocalização Animal , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/fisiologia , Bicuculina/farmacologia , Contagem de Células/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Tentilhões , Lateralidade Funcional , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Masculino , Modelos Biológicos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Quinoxalinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
10.
Proc Natl Acad Sci U S A ; 103(4): 1088-93, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16418265

RESUMO

In both humans and songbirds, infants learn vocalizations by imitating the sounds of adult tutors with whom they interact during an early sensitive period. Vocal learning occurs in few animal taxa; similarities in the imitation process between humans and songbirds make the songbird a unique system in which vocal learning mechanisms can be studied at the neurobiological level. One theory of vocal learning proposes that early auditory experience generates auditory memories that subsequently guide vocal imitation. We now present a combination of behavioral and neurophysiological results, obtained in a songbird, that support this theory. We show that neurons in a forebrain auditory area of adult male zebra finches are selectively tuned to the song of a tutor heard early in development. Furthermore, the strength of this selectivity shows a striking correlation with the fidelity of vocal imitation, suggesting that this auditory memory may have served as the model for song learning.


Assuntos
Memória , Aves Canoras/anatomia & histologia , Vocalização Animal , Estimulação Acústica , Acústica , Comunicação Animal , Animais , Córtex Auditivo , Vias Auditivas , Eletrodos , Eletrofisiologia , Modelos Neurológicos , Vias Neurais , Plasticidade Neuronal , Neurônios , Software , Aves Canoras/fisiologia , Som , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...