Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(11): 5552-5562, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38883433

RESUMO

Conjugated polymers are a versatile class of electronic materials featured in a variety of next-generation electronic devices. The utility of such polymers is contingent in large part on their electrical conductivity, which depends both on the density of charge carriers (polarons) and on the carrier mobility. Carrier mobility, in turn, is largely controlled by the separation between the polarons and dopant counterions, as counterions can produce Coulombic traps. In previous work, we showed that large dopants based on dodecaborane (DDB) clusters were able to reduce Coulombic binding and thus increase carrier mobility in regioregular (RR) poly(3-hexylthiophene-2,5-diyl) (P3HT). Here, we use a DDB-based dopant to study the effects of polaron-counterion separation in chemically doped regiorandom (RRa) P3HT, which is highly amorphous. X-ray scattering shows that the DDB dopants, despite their large size, can partially order the RRa P3HT during doping and produce a doped polymer crystal structure similar to that of DDB-doped RR P3HT; Alternating Field (AC) Hall measurements also confirm a similar hole mobility. We also show that use of the large DDB dopants successfully reduces Coulombic binding of polarons and counterions in amorphous polymer regions, resulting in a 77% doping efficiency in RRa P3HT films. The DDB dopants are able to produce RRa P3HT films with a 4.92 S/cm conductivity, a value that is ∼200× higher than that achieved with 3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the traditional dopant molecule. These results show that tailoring dopants to produce mobile carriers in both the amorphous and semicrystalline regions of conjugated polymers is an effective strategy for increasing achievable polymer conductivities, particularly in low-cost polymers with random regiochemistry. The results also emphasize the importance of dopant size and shape for producing Coulombically unbound, mobile polarons capable of electrical conduction in less-ordered materials.

2.
Biophys J ; 122(11): 2242-2255, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36639867

RESUMO

Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Microscopia de Fluorescência , Fenômenos Físicos
3.
Nat Commun ; 12(1): 2347, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879775

RESUMO

Intrinsic mechanical properties of sub-100 nm thin films are markedly difficult to obtain, yet an ever-growing necessity for emerging fields such as soft organic electronics. To complicate matters, the interfacial contribution plays a major role in such thin films and is often unexplored despite supporting substrates being a main component in current metrologies. Here we present the shear motion assisted robust transfer technique for fabricating free-standing sub-100 nm films and measuring their inherent structural-mechanical properties. We compare these results to water-supported measurements, exploring two phenomena: 1) The influence of confinement on mechanics and 2) the role of water on the mechanical properties of hydrophobic films. Upon confinement, polystyrene films exhibit increased strain at failure, and reduced yield stress, while modulus is reduced only for the thinnest 19 nm film. Water measurements demonstrate subtle differences in mechanics which we elucidate using quartz crystal microbalance and neutron reflectometry.

4.
Adv Funct Mater ; 30(28): 2001800, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684909

RESUMO

Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.

5.
Langmuir ; 36(26): 7259-7267, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460498

RESUMO

Collagen is a skeleton of native extracellular matrix (ECM) that is known to provide mechanical and structural stability. In an attempt to develop a new connective cellular model with the surrounding ECM without further experimental complications, such as the reconstitution of ECM receptors, we designed the experiments and discovered that the fibrillogenesis of membrane-bound collagen is not spontaneous as it is in the form of free collagen in bulk solution. The confocal microscopic results suggest that cholesterol is a crucial component that facilitates the fibril formation on the membrane surface. In situ X-ray and neutron reflectivity on Langmuir monolayer and solid-supported lipid bilayer models, respectively, reveal two features of cholesterol effects on the collagen fibril formation. Mainly, cholesterol increases the lateral lipid headgroup separation on the membrane surface, which promotes the association degree of collagen monomers. It also enhances the elastic modulus of the membrane to impede membrane filtration by the collagen assemblies.


Assuntos
Colágeno , Matriz Extracelular , Colesterol , Citoesqueleto , Módulo de Elasticidade
6.
Langmuir ; 36(14): 3970-3980, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32207953

RESUMO

Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...