Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888358

RESUMO

Several previous studies in the field of assisted reproduction have focused on the use of blood gel derivatives, such as platelet-rich fibrin (PRF), as a treatment for endometrial rehabilitation. However, the ability to release growth factors and the gel form of this product led to the evolution of platelet lysates. In this study, blood gel derivatives, including PRF lysate, which was in liquid form, and PRF gel, were collected and evaluated for growth factors. It was shown to be effective in endometrial wound healing and regeneration in mouse injured uterine tissue models through structure and function (pinopode expression, embryo implantation) evaluation. The results demonstrated that the concentrations of growth factors, including PDGF-AB and VEGF-A, were higher in the PRF lysate compared to the PRF gel (p < 0.05). PRF lysate could release these growth factors for 8 days. Furthermore, both PRF gel and PRF lysate restored the morphology of injured endometrial tissues in terms of luminal and glandular epithelia, as well as uterine gland secretory activity. However, the presence of pinopodes and embryonic implantation were only observed in the PRF lysate group. It can be concluded that PRF lysate promotes wound healing in mouse injured tissue models in vitro, which can act as healing products in tissue repair.

2.
Asian Biomed (Res Rev News) ; 17(5): 222-229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899763

RESUMO

Background: Owing to the growing global demand for organ replacement and tissue regeneration, three-dimensional (3D) printing is widely recognized as an essential technology in tissue engineering. Biomaterials become a potential source of raw materials for printing ink by containing factors that promote tissue regeneration. Platelet concentrates are autologous biological products that are capable of doing that. Objectives: This study was carried out to create bioinks capable of providing biological signals by combining gelatin-alginate with platelet concentrates. Methods: This study combined platelet concentrates, including platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), with gelatin and alginate to create bioinks. Bioink properties, including gelatinization and pH, were assessed before printing. After that, the scaffolds were done, and the growth factor (GF) release and cytotoxicity from these scaffolds were performed. Results: Results showed that all the three bioinks, including alginate-gelatin (AG), alginate-gelatin-PRP (AGP), and alginate-gelatin-PRF (AGF) were gelatinized right at the end of bioink fabrication and had a pH around 7. The scaffolds from bioinks supplemented with platelet concentrates secreted GFs that remained for 12 d, and the extracts from them were not cytotoxic for the L929 cell line. Conclusion: In summary, bioinks were made by combining AG with platelet concentrates and had properties suitable for creating scaffolds with cell-oriented grafts in the development of artificial tissues and organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...