Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(11): 1768-1780, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37465994

RESUMO

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH3 /O2 (2:1 molar ratio) plasma post-treatment (TMS + NH3 /O2 nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS). It was found that TMS + NH3 /O2 nanocoatings had a surface composition of 41.21 ± 1.06 at% oxygen, 31.90 ± 1.08 at% silicon, and 24.12 ± 1.7 at% carbon, and very small but essential amount of 2.77 ± 0.18 at% nitrogen. Surface chemical stability of the plasma coatings was noted with persistent O/Si atomic ratio of 1.292-1.413 and N/Si atomic ratio of ~0.087 through 2 years. The in vitro biological responses of plasma nanocoatings were studied by evaluating the cell proliferation and migration of porcine coronary artery endothelial cells (PCAECs) and smooth muscle cells (PCASMCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay results revealed that, after 7-day incubation, TMS + NH3 /O2 nanocoatings maintained a similar level of PCAEC proliferation while showing a decrease in the viability of PCASMCs by 73 ± 19% as compared with uncoated L605 surfaces. Cell co-culture of PCAECs and PCASMCs results showed that, the cell ratio of PCAEC/PCASMC on TMS + NH3 /O2 nanocoating surfaces was 1.5-fold higher than that on uncoated L605 surfaces, indicating enhanced selectivity for promoting PCAEC growth. Migration test showed comparable PCAEC migration distance for uncoated L605 and TMS + NH3 /O2 nanocoatings. In contrast, PCASMC migration distance was reduced nearly 8.5-fold on TMS + NH3 /O2 nanocoating surfaces as compared to the uncoated L605 surfaces. Platelet adhesion test using porcine whole blood showed lower adhered platelets distribution (by 70 ± 16%), reduced clotting attachment (by 54 ± 12%), and less platelet activation on TMS + NH3 /O2 nanocoating surfaces as compared with the uncoated L605 controls. It was further found that, under shear stress conditions of simulated blood flow, TMS + NH3 /O2 nanocoating significantly inhibited platelet adhesion compared to the uncoated 316L SS stents and TMS nanocoated 316L SS stents. These results indicate that TMS + NH3 /O2 nanocoatings are very promising in preventing both restenosis and thrombosis for coronary stent applications.


Assuntos
Células Endoteliais , Trombose , Animais , Suínos , Stents , Plaquetas/metabolismo , Coagulação Sanguínea , Ligas de Cromo , Trombose/prevenção & controle
2.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079346

RESUMO

The objective of this study was to evaluate the biocompatibility of trimethylsilane (TMS) plasma nanocoatings modified with NH3/O2 (2:1 molar ratio) plasma post-treatment onto cobalt chromium (CoCr) L605 alloy coupons and stents for cardiovascular stent applications. Biocompatibility of plasma nanocoatings was evaluated by coating adhesion, corrosion behavior, ion releasing, cytotoxicity, and cell proliferation. Surface chemistry and wettability were studied to understand effects of surface properties on biocompatibility. Results show that NH3/O2 post-treated TMS plasma nanocoatings are hydrophilic with water contact angle of 48.5° and have a typical surface composition of O (39.39 at.%), Si (31.92 at.%), C (24.12 at.%), and N (2.77 at.%). The plasma nanocoatings were conformal to substrate surface topography and had excellent adhesion to the alloy substrates, as assessed by tape test (ASTM D3359), and showed no cracking or peeling off L605 stent surfaces after dilation. The plasma nanocoatings also improve the corrosion resistance of CoCr L605 alloy by increasing corrosion potential and decreasing corrosion rates with no pitting corrosion and no mineral adsorption layer. Ion releasing test revealed that Co, Cr, and Ni ion concentrations were reduced by 64-79%, 67-69%, and 57-72%, respectively, in the plasma-nanocoated L605 samples as compared to uncoated L605 control samples. The plasma nanocoatings showed no sign of cytotoxicity from the test results according to ISO 10993-05 and 10993-12. Seven-day cell culture demonstrated that, in comparison with the uncoated L605 control surfaces, the plasma nanocoating surfaces showed 62 ± 7.3% decrease in porcine coronary artery smooth muscle cells (PCASMCs) density and had comparable density of porcine coronary artery endothelial cells (PCAECs). These results suggest that TMS plasma nanocoatings with NH3/O2 plasma post-treatment possess the desired biocompatibility for stent applications and support the hypothesis that nanocoated stents could be very effective for in-stent restenosis prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...