Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106759

RESUMO

Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.

2.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745683

RESUMO

Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.

3.
Chin Med ; 16(1): 132, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876186

RESUMO

BACKGROUND: Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. METHODS: Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. RESULTS: The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. CONCLUSION: HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway.

4.
Chin Med ; 16(1): 15, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509239

RESUMO

BACKGROUND: Hereditary ataxia (HA) represents a group of genetically heterogeneous neurodegenerative diseases caused by dysfunction of the cerebellum or disruption of the connection between the cerebellum and other areas of the central nervous system. Phenotypic manifestation of HA includes unsteadiness of stance and gait, dysarthria, nystagmus, dysmetria and complaints of clumsiness. There are no specific treatments for HA. Management strategies provide supportive treatment to reduce symptoms. OBJECTIVES: This systematic review aimed to identify, evaluate and summarise the published literature on the therapeutic roles of natural remedies in the treatment of HA to provide evidence for clinical practice. METHODS: A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Web of Science, PubMed and Science Direct Scopus were thoroughly searched for relevant published articles from June 2007 to July 2020. RESULTS: Ten pre-clinical and two clinical studies were eligible for inclusion in this systematic review. We identified the therapeutic roles of medicinal plants Brassica napus, Gardenia jasminoides, Gastrodia elata, Ginkgo biloba, Glycyrrhiza inflata, Paeonia lactiflora, Pueraria lobata and Rehmannia glutinosa; herbal formulations Shaoyao Gancao Tang and Zhengan Xifeng Tang; and medicinal mushroom Hericium erinaceus in the treatment of HA. In this review, we evaluated the mode of actions contributing to their therapeutic effects, including activation of the ubiquitin-proteasome system, activation of antioxidant pathways, maintenance of intracellular calcium homeostasis and regulation of chaperones. We also briefly highlighted the integral cellular signalling pathways responsible for orchestrating the mode of actions. CONCLUSION: We reviewed the therapeutic roles of natural remedies in improving or halting the progression of HA, which warrant further study for applications into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...