Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(32): 4275-4289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566567

RESUMO

Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.

2.
Science ; 382(6674): 1056-1065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033072

RESUMO

The development of functionally distinct catalysts for enantioselective synthesis is a prominent yet challenging goal of synthetic chemistry. In this work, we report a family of chiral N-heterocyclic carbene (NHC)-ligated boryl radicals as catalysts that enable catalytic asymmetric radical cycloisomerization reactions. The radical catalysts can be generated from easily prepared NHC-borane complexes, and the broad availability of the chiral NHC component provides substantial benefits for stereochemical control. Mechanistic studies support a catalytic cycle comprising a sequence of boryl radical addition, hydrogen atom transfer, cyclization, and elimination of the boryl radical catalyst, wherein the chiral NHC subunit determines the enantioselectivity of the radical cyclization. This catalysis allows asymmetric construction of valuable chiral heterocyclic products from simple starting materials.

3.
Nat Prod Rep ; 39(9): 1766-1802, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35762867

RESUMO

Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Xantonas , Antioxidantes , Produtos Biológicos/química , Cumarínicos/farmacologia , Flavonoides , Hipoglicemiantes , Floroglucinol/química , Floroglucinol/farmacologia , Terpenos/química
4.
Drug Deliv Transl Res ; 8(5): 1545-1563, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29916012

RESUMO

Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Transferrina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Glioblastoma/metabolismo , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Receptores da Transferrina/metabolismo , Transcitose , Transferrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...